CHAPTER 8
Sampling Design

Danaus plexippus
Monarch butterfly
Artist: D. Andrew Saunders
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Design is critical to any sample-based monitoring study. The consequences of poor study design
are many: lost time and money, reduced credibility, incorrect (or no) management decisions, and
unnecessary resource deterioration, to name just a few. Take your time during this stage to design

a study that will meet your management and sampling objectives in the most efficient manner.
Six basic decisions, which are discussed in detail in this chapter, must be made in designing
monitoring studies based on sampling;

. What is the population of interest?

. What is an appropriate sampling unit?

. How should sampling units be positioned?

1
P
3. What is an appropriate sampling-unit size and shape?
4
5

. Should sampling units be permanent or temporary?

6. How many sampling units should be sampled?

Throughout this handbook we encourage
you to initiate your monitoring study
with a pilot study. This is essentially a
trial run of your monitoring design. A
pilot study accomplishes three critical
things: 1) it provides estimates of the

standard deviation needed to plug into
sample size formulas to determine an
adequate sample size to meet your
sampling objective (Chapter 14); 2) it
exposes problems at an early stage; and

3) it demonstrates whether a monitoring
design is feasible. Based on the pilot

study you perform, you may find that you

cannot meet your objectives within the
constraints of the time and money
available. One solution to this dilemma is
to change from sample-based monitoring
to monitoring based on a qualitative
technique or a complete census. Other
solutions include choosing a different
attribute to measure or changing your
management and sampling objectives to
reflect a less precise estimate (in the case
of a target/threshold objective) or
detection of a larger change (in the case
of a changeltrend objective).

These decisions must be made based on site-specific informa-
tion and objectives. There is no “right” sampling-unit size and
shape, just as there is no “right” number of sampling units. In
most situations, these decisions can be made only through on-
site assessment by pilot sampling.

The sampling-design issues discussed in this chapter per-
tain to monitoring studies in which all of the sampling units or
individuals are available for measurement. In animal studies,
individuals are often secretive and difficult to count. For these
types of animals, most of the sampling-design issues discussed
in this chapter are not applicable. Chapter 13 covers these sit-
uations.

WHAT IS THE POPULATION
OF INTEREST?

As we learned in Chapter 7, the population consists of the
complete set of units about which we want to make infer-
ences. We are using “population” in the statistical, rather than
the biological, sense. That both biologists and statistitians use
the term “population” for different things creates ongoing con-
fusion. To clarify the term, we describe four types of popu-
lations: biological populations, target populations, sampled
populations, and statistical populations (Box 8.1).

A “biological population” is often difficult to define. A
plant species that only occurs within a 100-hectare wetland

with no other of this species found for over 100 km would likely be unanimously considered a
biological population. A group of animals isolated on a single mountaintop would likely be con-
sidered unequivocally a population. Most plant and animal groupings, however, are less obvi-
ously isolated from others, creating a problem of identifying boundaries of the biological
population. You will need to consider the biological population when assessing population rarity
and risk (Chapter 3) and when developing ecological models that include immigration, emigra-
tion, and movement within and between biological populations (Chapter 14).

Management activities usually take place within some type of administrative boundary that
does not respect the boundaries of the biological population. The portion of the biological popu-
lation that you manage and are interested in we call the “target population.” For example, if we
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Box 8.1. FOUR POPULATIONS

A rare plant species grows in a 300 hectare wet meadow, isolated by about 40 km from the
nearest of the 5 known occurrences of this species. Within the meadow, estimates of the
number of individuals of this small perennial species range up to a million or more. A por-
tion of the wet meadow (approximately 100 hectares) is managed by your office. This area
was fenced 5 years ago to eliminate livestock grazing. The remainder is privately owned and
lightly grazed; the landoumer refuses to allow any monitoring on his land. You are limited
to spending only 2 days per year monitoring the portion of the population managed by your
office. You recognize that you cannot possibly sample the entire 100 hectares in a single day
(the other day will be spent on data analysis and report-writing). Travel is difficult across
the wet meadow, and you are concerned about disrupting a great heron rookery. You decide
to establish a 100m x 100m monitoring site within the 100 hectares. Within this monitor-
ing site, you will annually estimate density. After trials of several sizes and shapes of
quadrats, you select a 25m x 0.5m quadrat for sampling, resulting in 800 potential
quadrats that can be placed in the 100 x 100m area without overlap.

* Biological Population: all plants within the 300 hectare wetland. (This is an easy exam-
ple; most biological population boundaries are much more difficult to draw.)

* Target Population: all plants within the 100 hectares managed by your office.
* Sampled Population: all plants within the 100 x 100m monitoring site.

* Statistical Population: the 800 quadrats that may be potentially sampled.

are interested in the success of a rare fish population as measured by the average length, our tar-
get population may be all the individuals of that species in a spring system of a preserve that has
been set aside for that species’ protection. Similarly, our target population might be all of the in-
dividuals of a rare plant species occurring within a particular wet meadow.

In sampling, the difference between the target population and the population you actually
sample (the “sampled population”) must be understood. When target populations are small and
distributed in some uniform area such as all plants within a fenced pasture, we may be able to
position sampling units throughout the entire target population. However, two factors usually
lead to defining a new sampled population: 1) irregular target population boundaries, and 2) tar-
get populations that cover a very large geographic area.

When the target population is small, but has irregular boundaries, then we might fit some
regular-shaped polygon such as a square or rectangle over the bulk of the population (as illus-
trated in Figure 8.1A). This newly defined area, often referred
to as a macroplot, becomes our sampled population. The macro-
plot is usually permanently marked. The use of a macroplot
facilitates the positioning of sampling units (see below) and en-
sures that the same area is sampled each year.

We can make statistical inferences only to the boundaries of the sampled population (i.e., to
the area within the macroplot), not to the entire target population. This approach works well for
small target populations; a large population, however, would necessitate a very large macroplot,
resulting in long distances between sampling units. The time necessary to travel to each sampling
unit would make the design inefficient.

If the target population covers a very large geographic area, constraints of time and money,
coupled with the tremendous variability usually encountered when sampling a very large popula-

Macroplots are relatively large areas,
with sampling units such as quadrats,
lines or points randomly located
within them.
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Figure 8.1. Positioning of macroplots (rectangles and squares) within irregularly
shaped target populations (thin lines). The thick irregular line denotes a river. Fig-
ure B.LA. A single 200m x 75m macroplot is placed over the bulk of the target
population. Inferences can be made only to the area within the macroplot (i.e., the
macroplot is the sampled population). Figure 8.1.B. Target population covers a
much larger area (note scale change). Six 100m x 100m macroplots are randomly
placed within the target population. Inferences can be made to the entire target
population (i.e., the sampled population is the same as the target population). Fig-
ure 8.1.C. A single square macroplot is placed in the target population. Inferences
can be made only to the area within the macroplot (i.e., the macroplot is the sam-
pled population). Figure 8.1.D. Subjective placement of a macroplot within a “rep-
resentative” key area (dotted line).

tion, often require further restriction of the sampled population to a smaller geographic area.
There are several ways this can be accomplished:

I. A sample of macroplots can be randomly positioned within the target population
(Fig. 8.1B). If sampling takes place within each macroplot, then we have something
called a two-stage sampling design, described in detail later in this chapter. Statisti-
cal inferences can be made to the entire target population, and the sampled popula-
tion and the target population are the same.

2. A single macroplot can be subjectively positioned within the target population (Fig.
8.1C). The sampled population is the macroplot. No inferences to the target popu-
lation are possible because there is no way of determining how “representative” this
macroplot is of the target population.

3. A few macroplots can be subjectively positioned within the target population. Infer-
ences can be made only to the area encompassed by the macroplots. In other words,
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Figure 8.1. (Continued)

the sampled population is the area within the macroplots. The value of subjective
positioning is that you can place the macroplots in the areas you consider most rep-
resentative or critical.

When the target population area becomes very large and difficult to sample, we may select
one or a few key areas in which we will conduct monitoring (Fig.8.1D). The key area concept is
widely used, particularly in rangeland monitoring. Using this approach, key areas are selected
(subjectively) that we hope reflect what is happening on a larger area. We may believe that the
key area(s) are representative of a larger area (such as a pasture) or are critical or sensitive areas
where we are most interested in detecting a problem.

Although we would like to make inferences from our sampling of key areas to the larger
areas they are chosen to represent, this cannot be done statistically because the key areas were
chosen subjectively. We could, of course, choose to sample the larger areas, but the constraints
of time and money coupled with the tremendous variability usually encountered when sampling
very large areas often make this impractical. The key area concept represents a compromise.

Careful definition of the sampled and target population remains critical. Remember the
monitoring data only represents what is happening in the sampled population. Here are examples:

1. The key area is sampled with randomly placed quadrats. The key area is the sampled

population.

2. One macroplot is subjectively positioned within the key area (Fig. 8.1D). You can
only make inferences to the area inside the macroplot. Your sampled population is
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the macroplot, not the key area. (You could reduce the size of the key area to the
macroplot, making them the same.)

3. Several macroplots (a sample of macroplots) are randomly positioned within the key
area. This is a two-stage sampling design. Inferences may be drawn about the key
area in which the macroplots were randomly placed. The sampled population is the
key area.

Because statistical inferences can be made only to the key areas that are actually sampled, it
is important to develop objectives that are specific to these key areas. It is equally important to
clarify that actions will be taken based on what happens in the key area, even when it cannot be
demonstrated statistically that what is happening in the key area is happening in the area it was
chosen to represent. It is also important to base objectives and management actions on each key
area separately. Values from different key areas should never be averaged, because this gives the
impression that key areas are sampling units used to sample a much larger area than is really the
case. Key areas are selected with particular intent; they are not randomly selected sampling units.
Averaging values from key areas results in a “mean” value for which we can have no measure of
precision.

It is important to explicitly recognize the difference between your target population and
your sampled population so you know the limitations of your data. You can only draw statistical
inferences about your sampled population. You do not know how well the observations in the
sampled population compare with the target population, unless you sample the entire target
population. In management, it may be acceptable to make decisions for the entire target popula-
tion based on the results from the sampled population. All stakeholders may have agreed to
abide by the results from the sampled population (knowing there exists a risk that results may
not represent the target population), or you may decide to collect qualitative or other ancillary
data in the target population that supports the results in the sampled population. Consider the
following questions:

¢ How limited are your monitoring resources?
e How difficult will it be to sample the entire target population?

¢ How comtortable will you (or the decision-maker} be in making management deci-
sions for the entire target population based on the information gathered from a
more limited sampled population?

e If the sampled area is located toward the middle of the population, will you miss
changes that occur near the edge of the target population?

WHAT IS AN APPROPRIATE SAMPLING UNIT?

The type of sampling unit you select depends on the attribute you are measuring, which should
be detailed in a specific management objective (see Chapter 14). Density, cover, frequency, bio-
mass, and size of plant or animal populations are the attributes most commonly monitored. At-
tributes related to individual measures of performance such as height or number of flowers for
plants and length and weight of animals are also often of interest (Box 8.2).

In many cases, simply determining the attribute you are going to measure determines the
sampling unit. If you are going to measure density, frequency, or biomass, the sampling unit will
be a quadrat. For cover, however, you have several choices. The sampling unit can be a line inter-
cept, a point intercept, or a quadrat (Chapter 12 gives information to help you decide which
of these to choose). If you are measuring something about individuals, the sampling unit is the
individual (although, as we will see later, you will often incorporate quadrats). Most animals,
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Box 8.2. EXAMPLES OF SAMPLING UNITS

® Individual plants. Plants are the sampling units for attributes such as plant height, num-

ber of flowers per plant, or cover if the cover measurements are made on individual plants
(e.g., tree stem diameters, bunchgrass basal area measurements).

Individual animals. Animals are the sampling units for attributes such as height, length
(e.g., snout-vent length in amphibians), condition (e.g., kidney fat index in ungulates),
parasite loads, or reproductive rates (e.g., number of yearlings accompanying adult fe-
males).

Plant parts. Fruits might be the sampling units if the attribute is the number of seeds per
fruit or the percentage of fruits containing some seed herbivore. Or, you may be interested
in estimating the number of flowers per inflorescence, in which case the inflovescence is the
sampling unit.

Quadrats (plots). Most estimates of plant density, frequency, or biomass require the use
of quadrats, which represent the sampling units. Quadrats can also be the sampling units
for measurements of vegetation cover if visual estimates of cover are made within
quadrats. Most estimates of animal density, frequency, or biomass require the use of
quadrats, sometimes called belt transects if greatly elongated, which represent the sam-
pling units.

Lines (transects). When cover is measured using the line-intercept method, the line is the
sampling unit. Lines can also serve as sampling units when points (for cover) or quadrats
(for cover, density, or frequency) are positioned along lines and the points or quadrats are
not far enough apart to be themselves considered the sampling units (because they are not
independent of one another). The line-intercept method is occasionally used to estimate
animal populations based on the probability of transects intercepting animal tracks
(Becker 1991).

Points. When cover is measured with the point-intercept method and the points are ran-
domly positioned, then the points are the sampling units. Points are sometimes used for
sampling animals, mainly colonial ones that form large aggregations, such as corals.

Point frames or point quadrats. When plant cover is measured using point frames or point
quadrats and these frames or quadrats are randomly positioned, then the paint frames or
point quadrats are the sampling units. Foint frames are not recommended because they
are inefficient for measuring cover in most vegetation types (see Chapter 12},

Distance (plotless) methods. There is a class of techniques to estimate density called dis-
tance or plotless techniques. The sampling unit with these techniques is usually the indi-
vidual distance between a randomly selected point and the nearest plant or between a
randomly selected plant and its nearest neighbor. Distance measures are inaccurate for
most plant populations (see Chapter 12). Distance methods are also used in animal stud-
ies, but are different from those used in plant studies in that they attempt to overcome the
problem of incomplete detectability of individual animals. These methods are discussed in
Chapter 13.
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however, are too secretive or elusive to be directly counted; therefore, specialized sampling tech-
niques (covered in Chapter 13) are needed to estimate most population parameters for animals.
Certain sampling designs incorporate sampling units at more than one level. These are
called multistage sampling designs (Krebs 1998). The two-stage sampling design, discussed
below, is one example. A random sample of primary sampling units is selected. Then, a subsam-
ple is taken from each of the primary sampling units. This subsample is made up of secondary
sampling units (these are often called elements to differentiate between the two types of units).
The collection of sampling units from which you draw your sample is the statistical popula-
tion. For example, a macroplot 20m x 50m will contain 4000 frequency quadrats 50cm x 50cm
in size (quadrats do not overlap). The statistical population is the 4000 quadrats. If you were
sampling with density quadrats 50cm x 25m in size, the statistical population is the total number
of these that could fit into the 20m x 50m macroplot: 80 quadrats. These are finite statistical
populations (see Chapter 7), unless so many potential quadrats exist within a large area that the
number is essentially infinite. If you were sampling using line intercepts, the statistical popula-
tion is all the potential line intercepts that could be placed within the 20m x 50m macroplot. Be-
cause lines have no width (theoretically, at least) an infinite number could be placed within the
macroplot. The statistical population is thus infinite. This concept of infinite or finite popula-

tions has important implications for determining sample size and for analysis (see below and also
Chapter 9).

WHAT IS AN APPROPRIATE SAMPLING UNIT SIZE AND SHAPE?

Considerations

The most efficient sampling unit size and shape depend on the type of attribute being measured
and the morphology and spatial distribution of the species (or the object of your study such as
nests, burrows, motorcycle tracks). The most efficient design is usually the one that yields the
highest statistical precision (smallest standard error and narrowest confidence interval around the
mean) for either a given area sampled or a given total amount of time or money available. Sev-
eral factors must be considered:

Travel and Setup Time Versus Searching and Measuring Time

As the sampling unit increases in size, the time required to measure the unit increases. For esti-
mating density in quadrats, for example, you must consider whether it is more important to min-
imize the number of sampling units or the total area (or proportion) of the population sampled.
When sampling along transects, you must consider the time required to set up each transect, the
travel time between them, and the time needed to measure each transect. Consider the size of
the area you are sampling (is it a kilometer between each sampling unit?) and how difficult it is
to get from one sampling unit position to another (are you sampling on a cliff face?). Also con-
sider how hard it is to locate and measure the target species within each sampling unit. For large
or conspicuous species such as large mammals, trees, or tall herbaceous plants that occur at low
densities, having a large sample area or a long transect is not much of a problem because you can
see all of the individuals, even from a distance. For small, obscure species that may be hidden
under the vegetation canopy or under the leaf litter, you might have to search very carefully; in
this case minimizing the total sample area or length may be critical.

Spatial Distribution of Individuals in the Population

Very few biological populations are randomly distributed in the area they occupy. If they were,
different configurations of the same sampling unit size or length would perform similarly. Most
populations, however, are aggregated or clumped in their distribution. For clumped distribu-
tions, sampling units that intersect some clumps of the species will reduce both the number of
sampling units with zero counts and the number of sampling units with very high counts. This
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decreases the variation among the quadrats and increases the precision of estimates. It is best if
the sampling unit length (i.e., the length of the long side of the quadrat or the length of the tran-
sect) is longer than the mean distance between clumps.

As an example, consider the species Primula wilcoxii, which grows on the shaded side of ter-
races on a terraced slope in the foothills near Boise, Idaho. The terraces are approximately 1.5
meters apart. In this case, Im x Im quadrats to estimate density would be a very poor choice, be-
cause many of these would fall between terraces, resulting in many zero values. Some of the 1m
% 1m quadrats, however, would fall right on the terraces, and very high counts of this species
would be obtained for these quadrats. For this species at this terraced site, quadrats of 0.5m x
2.5m performed well.

Depending on the nature of your population, orientation of sampling units can be very im-
portant. For example, you want to orient rectangular quadrats to capture the variability within
the quadrats rather than between the quadrats. This results in lower, among-quadrat variance
and higher precision. Thus, if there is some gradient such as elevation or moisture to which the
population responds differently, you want to make sure your rectangular quadrats follow that
gradient to incorporate the variability within the quadrats. In the Primula wilcoxii example, the
rectangular quadrats were most efficient when placed perpendicular to the terraces. If you were
making counts of butterflies along transects,' you would orient the transects across changing
habitats rather than run parallel to them. Similarly, if you were estimating cover using a line-
intercept transect on a site that had a moisture gradient running from the east (wet edge) to the
west (dry edge), you would orient your transects from east to west along the gradient.

Edge Effects

Edge effects are an important consideration for quadrat sampling units. The edge of a quadrat is
its outer boundary. The more edge a quadrat has, the greater the difficulty in determining
whether individuals near the edge are in or out of the quadrat. Rectangular quadrats have more
edge per unit area than squares or circles. Although this is an important issue, Chapter 12 dis-
cusses ways to minimize the nonsampling error associated with edge bias when sampling plants
(stationary animals would follow the same conventions). For most animals, determining whether
an individual is in or out of the quadrat may be more difficult because they are moving and be-
cause you usually cannot necessarily measure the distance to them. This is, for example, an im-
portant issue when counting birds, some of which are often entering and leaving a study plot
while a count is being made. Chapter 13 discusses these issues. You must be consistent in apply-
ing whichever boundary convention you choose and to make sure, through training and docu-
mentation, that others involved in the monitoring during the first and all subsequent years use
the same convention.

Abundance of Target Population

If the density is relatively high, you will want to use smaller quadrats because you do not want to
be counting hundreds to thousands of occurences in each quadrat. Conversely, if density is rela-
tively low, you will want to use larger quadrats to avoid sampling many quadrats with no individ-
uals in them.

Ease in Sampling

The considerations here are the difficulties in searching the entire sampling unit and keeping
track of what portions have already been searched. With large quadrats for measuring density,
for example, long, narrow rectangles are easier to search because you can start at one end and
keep track of counts at intervals along the quadrat. With large, square quadrats, you will proba-
bly have to subdivide the quadrat area to ensure that you do not double-count.

"These types of transects in which counts are made are actually very long, narrow quadrats, compared to true transects which
have no width (theoretically dimensionless).
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Disturbance Effects

If the sampling unit size/shape is so large that you have to stand in the sampling unit to search
through it, you risk impacting the population through your sampling. This is particularly impor-
tant when sampling permanent sampling units, because the changes you observe over time may
simply be the result of your impacts to the sampling units and not reflect the true situation in the
sampled population as a whole. It is also a problem when using temporary sampling units, how-
ever, especially if you impact areas of the sampling unit before you have searched them.

Computer-Simulated Comparisons of Sampling Designs

The importance of selecting an efficient sampling unit configuration is often ignored when devel-
oping a monitoring study. Sampling units of different configurations perform differently, and the
efficiencies to be realized from using an appropriate configuration can be substantial. We will use
a particular type of sampling unit, quadrats for estimating density, to explore this issue further
using computer simulation.

As stated earlier, rectangular quadrats perform better than square or circular quadrats when
sampling clumped populations, but two unanswered questions remain: 1) What are the actual
trade-offs of changing quadrat size and shape on the number of quadrats to sample or on the
total area sampled? 2) As you make quadrats larger, you will presumably have to sample fewer of
them—but how many fewer? You can investigate these questions in the field, but you are some-
what limited in the number of different sizes and shapes you can try, and there are potential neg-
ative impacts from repeated sampling across the entire area.

Salzer (unpublished data) evaluated these sampling design decisions using computer-
simulated sampling. Two populations, each with 4000 plants, were created on the computer.
Plants in both populations exhibited a clumped distribution pattern, although they differed in
the degree of clumping. One of the populations had plants that were distributed along a gradi-
ent. Random samples of these virtual populations were drawn by computer, using density
quadrats of different sizes and shapes.

Consider the population of 4000 plants depicted in Figure 8.2. This population was termed
the “clumped-gradient population” because the plants were both clumped and distributed along
a gradient (note that this gradient follows the x-axis: there are more clumps near the left side of
the macroplot than there are near the right side). This population was subjected to 30 different
sampling designs that differed in the width and length of the quadrats. The following quadrat
widths were used: 0.25m, 0.5m, 1.0m, 2.0m, and 4.0m. The following quadrat lengths were
used: 1m, 2m, Sm, 10m, 25m, and 50m. Every combination of quadrat width and quadrat length
was used to sample the population (i.e., 0.25m x 1m, 0.25m X 2m . . . 4m x 25m, 4m x 50m).
Sampling was conducted so that the long side of the quadrat was oriented so the quadrat in-
cluded as much of the changing gradient as possible (i.e., the long side was oriented parallel to
the x-axis of the population as depicted in Figure 8.2).

For each of the 30 sampling designs, the entire population was sampled (i.e., all the
quadrats that fit in the population, without overlapping), so that true, parametric values for the
mean density and standard deviation could be calculated for every design. This is desirable for
comparing various sampling designs, but is nearly impossible to achieve in a field setting. The
true parametric values were entered into a sample size formula to determine how many quadrats
would need to be sampled to attain the desired precision. The precision level selected was an es-
timated mean density with a 95% confidence interval that was no wider than +30% of the mean
value. This brought performance of each sampling design into a common currency—the num-
ber of quadrats to sample—so that they could be compared with one another. By knowing the
size and number of quadrats being used, the proportion of the population sampled was also
calculated.

Figure 8.3 depicts the interaction between quadrat width, quadrat length, number of
quadrats, and proportion of the population sampled. A typical quadrat configuration used in
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Figure 8.2. The “clumped-gradient population.” A population of 4,000 plants aggre-
gated into clumps and responding to a gradient that runs from left to right (along the
x-axis). Note the much greater number of clumps near the left side of the population,



112 / MEASURING AND MONITORING PLANT AND ANIMAL POPULATIONS

80
70
£ 60
=
L,
EL 25
= 50 —
5 //,
E" 4.0 m width
§_ 40 e Ty
Q. i
‘s 34
c 30 ———_\\_ﬁ
2 2.0 m width
S 142 47 !
& 20 e 11|
2 / 1.0 m width 16
1664 #1714 o
or 1044 g0 0.5 m width m
240 Wl 57 0.25 m width 22
ol 299
0 5 10 15 20 25 30 35 40 45 50
Quadrat length (m)
80
B :
70 =]
- 4.0 m width
£ 60
3 29 28
_g- /
< 50
2 20 2.0 m width
o
= 5!
g‘_ 40 Z 0
(=8
G B4 1.0 m width
g 30
= 10 2 2
2 136 105
g 20 0.5 m width
(=N
159//4/157'/ 123 o _____________——52‘
0.25 m width——
L ey s 77 t
z;agf,z'm T L1
0 s
0 5 10 15 20 25 30 35 40 45 50
Quadrat length (m)
Figure 8.3. Comparison of 30 sampling designs to sample density. Designs used quadrats of different widths

(0.25m, 0.5m, 1.0m, 2.0m and 4.0m) and lengths (Im, 2m, 5m, 10m, 25m, 50m) for a total of 30 different
quadrat configurations. All designs achieved the same level of precision. Numbers next to data points are the
number of quadrats that must be sampled to meet the desired level of precision in the estimate of mean density
using that particular quadrat size and shape. Figure B.3A shows the results when quadrarts are oriented along the
gradient shown in the population of Figure 8.2 (i.e., the long edge of the quadrat along the x-axis of the popula-
tion, including as much of the gradient variability as possible). Figure 8.3B shows the results when quadrats are
oriented perpendicular to the gradient (i.e., the long edge of the quadrat along the y-axis of the population)
shown in Figure B.2. Figure B.3C shows the results from sampling a similar population of 4000 plants that lacks a
gradient but has much denser clumping (i.e., more unoccupied space between clumps). This densely clumped

population is shown in Figure 8.5,
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Figure 8.3. (Continued)

monitoring is the Im x 1m quadrat. Note that 240 of these quadrats would need to be sampled
to meet the same precision of the estimate as sampling only sixteen 1m x 50m quadrats. The de-
sign requiring the fewest quadrats (ten 4.0m x 50m) requires sampling about 40% of the area.
Some of these designs offer smaller sample sizes and smaller proportions of the population. For
example, compare these two designs: sample twenty-five 4m x 25m quadrats (50% of the entire
population), in which case you must count about 2000 plants, or sample twenty-two 0.25m x
50m quadrats (5.5% of the population), in which case you must count only about 220 plants.
The design that minimizes both the area to be searched and the number of quadrats to locate is
the longest, thin quadrat of 0.25m x 50m. While the Im x 1m quadrat is typically used in samp-
ling vegetation, it is almost never the most efficient size. Similar considerations exist for square
or circular sampling units used for sampling animal populations.

Which of the 30 designs is best? It depends on the difficulty of counting the plant within
each quadrat, the time required for placement of quadrats, and the importance of edge effects. In
selecting a quadrat size and shape consider:

* How conspicuous is your target plant or animal? Can it be spotted at eve-level or
does it take careful searching of every square centimeter of sample area? If large and
easily visible from eye level, you might choose a wider quadrat size, leading to a
smaller sample size. The larger proportion of the population sampled might not
carry much of a penalty (cost) if the portions of the quadrats between clumps can be
searched rapidly.

* How quickly can vou locate sampling units? If travel between sampling units is diffi-
cult because of topography or dense vegetation, sampling fewer larger quadrats
would probably save time.

* How big a problem is edge effect? Are plants single-stemmed with small diameter
stems clearly arising from a rooted point so that boundary decisions are relatively
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rare and quickly made when they do occur or are the target plants bunch grasses
with a wide basal area and amorphous shapes, requiring many difficult and time-
consuming boundary decisions? Are the animals relatively slow-moving, or is deter-
mining whether they are in or out of the sampling unit difficult because they are
moving quickly?

If plants are small and inconspicuous with distinct, single-rooted stems, look for a design
that has both a small sample size and samples a small proportion of the population. The twenty-
two 0.25m x 50m quadrats would be a good choice in this case. Realize, however, that even if
minimizing the sample area is critical, you will not want to sample 416 of the 0.25m x 1m
quadrats (2.1% of the population area).

Results for the same clumped-gradient population with quadrat orientation reversed (i.e.,
with the long side parallel to the y-axis) are shown in Figure 8.3B. Rather than looking at the in-
dividual sample sizes, concentrate on just the relative proportion of the population that must be
sampled. With this quadrat orientation, quadrats located near the left of the macroplot will have
high numbers of plants, while quadrats located near the right of the macroplot will have low
numbers. This pattern of high and low quadrat counts is undesirable, producing a high standard
deviation and wide confidence intervals. With the 4m x 50m quadrat, you need to sample over
70% of the population. You would be better off counting all of the plants in the macroplot (con-
ducting a complete census) than using this quadrat size. Clearly it is better to use a narrower
quadrat that is oriented in the opposite direction.

Results from a population of 4000 plants that are more tightly clumpf,d with the clumped
centers randomly distributed (without a gradient) are shown in Figure 8.3C. (You can see this
population in Figure 8.5). Because of the tighter clumping of plants in the dense-clumped popu-
lation, sample sizes are even greater for small and square or short and wide quadrats than they
were for the clumped-gradient population. This is because quadrats with plants tend to have
higher counts and there are more quadrats with zero plants, a situation that increases the stan-
dard deviation. It would take, for example, 578 of the Im x 0.25m quadrats to achieve the
desired level of precision in the dense-clumped population as compared with 416 in the
clumped-gradient population. With increasing clumping, the advantages of long, narrow
quadrats also increase. Conversely, it plants are randomly distributed, quadrat shape has no influ-
ence on the number of quadrats to sample. This, however, is seldom the case in nature.

Even though the narrower quadrat sizes perform better statistically, there are practical limi-
tations that must be considered. For example, when sampling the virtual dense-clumped popula-
tion by computer using different shapes of quadrats with an area of 1m?, a 2cm-wide x 50m-long
quadrat performed better (n = 98 quadrats) than a Im x Im quadrat (n = 394), but the 2cm
width would be a ridiculous shape to try to use in the field, because of the tremendous amount
of “noise” introduced by edge effect.

In many monitoring situations, especially for herbaceous plants or small, slow-moving
animals, a 0.25m or 0.5m quadrat width works well for estimating density. (This width would
probably be inappropriate, however, for large or sparsely distributed plants, or for large or fast-
moving animals.) Either is a convenient width to search in. Widths larger than 1m or 2Zm are dif-
ficult to search because it is hard to see individuals at the far edge (unless all the individuals are
fairly large and there is minimal associated vegetation to obscure your line of sight). The quadrat
length should be determined by the size of the area that you are working in and the spatial distri-
bution of the species you are counting. You want to avoid getting many sampling units with
zeros, so you want your quadrats to be long enough to incorporate several clumps. You also do
not want your quadrats so long that you have to count thousands of individuals—the time in-
volved and the potential measurement error associated with counting that many individuals
would be too great. Box 8.3 gives a procedure for comparing the efficiency of different density
quadrat sizes and shapes through pilot sampling.
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Box 8.3. A PROCEDURE TO COMPARE THE EFFICIENCY OF DIFFERENT QUADRAT
SIZES AND SHAPES USING PILOT SAMPLING

Select several good candidates of quadrat dimensions that are multiples of the two dimensions of the
area you want to sample. For example, in a 50m x 100m macroplot where you want to orient
quadrats with the long side along the 50m side of the macroplot, you might select 5m; 10m, 25m and
50m (all factors of 50m) and widths of 0.25cm and 0.50cm. Randomly locate some initial number (e.g.,
10) of 0.5m % 50m quadrats in the population of interest. Position the quadrats according to the design
you plan to use (this will allow you to use the data from this initial test as part of your actual sample).
Attach one end of a 50m tape to a pin or stake, pull it tight and treat one edge of the tape as the center
of your quadrat. Count all plants that are within 0.25cm of either side of the tape edge (total width =
0.5m) and record separately, by side, on a field data sheet (Figure 8-B). You should also subdivide the
long dimension of the quadrat and record plant counts separately within each segment (e.g., every
meter) along your tape. This enables you to look at the performance of quadrats of different lengths.

You can save space by recording the segment number only if you have actual plant counts for that seg-
ment. For example, you have laid out your tape and started searching along both sides of the tape. You
find your first plants (three of them on the left side and two of them on the right side in the third seg-
ment of the tape (between 2m and 3m along the tape). The next plants (two of them on the left side,
none on the right) are found in the seventh segment (between 6m and 7m along the tape). The entries
on the field data sheet would look like Figure 8-B.

Continue this counting and recording procedure until all your preliminary quadrats have been sam-
pled. Now you can use a hand calculator to calculate means and standard deviations for different size
and shape quadrats. To compare quadrats of different sizes you should calculate the coefficient of varia-
tion (CV) for each quadrat size. The CV is calculated as follows:

CN =g/
Where: x

5

The sample mean
The sample standard deviation

Unlike the standard deviation, which has a magnitude dependent on the magnitude of the data, the co-
efficient of variation is a relative measure of variability. Thus, coefficients of variation from different
sampling designs can be compared. The smaller the coefficient of variation the better. If hwo designs
have similar coefficients of variation, choose the design that will be easiest to implement.

If, after evaluating the performance of different quadrat sizes, you select a size and shape that was some
subcomponent of the larger quadrat sampled, you can still use the data as part of your first year’s set of
data. To do this you should randomly select the subcomponent from each of your pilot quadrats. Using
the previous example, if you elected to use a 0.25m x 50m quadrat, you could randomly select one half
of each of the 0.5m x 50m quadrats that you sampled as part of your pilot effort.

PLANT COUNTS
PLOT # SEGMENT # Left Right Total
1 3 3 2 5
| 7 2 0 2

Figure B-B. Examples of entries on a field data sheet when plants are found in the
third and seventh segments of plot number |.
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Other Sampling Units

Your prime design objective when selecting a sampling-unit size and shape is to try to reduce the
variability between sampling units while maintaining a size and shape that is practical in the
field. Many of the design principles described for density quadrats are applicable to other types
of sampling units. Transects should be long enough to intersect clumps of the target species and
should be oriented to include as much of the gradient variation as possible. Plots for visually esti-
mating cover or measuring biomass are typically quite small and often square or rectangular, be-
Cause it is difficult to estimate cover, to clip vegetation, or to estimate biomass in large or long
plots. These small quadrats can be arranged, however, along a transect, with the transect, not the
quadrats, treated as the sampling unit. This design is really a two-stage sampling design, with the
transects serving as the primary sampling units and the quadrats serving as secondary sampling
units. We treat this in more detail below.

Chapter 12 describes sampling-unit design considerations for most of the typical methods of
measuring plants: density, cover measured by point intercept, line intercept and quadrat estima-
tion, biomass measurements, and frequency measurement. Chapter 13 describes special consid-
erations in sampling-unit design for animal studies.

Determining Sampling-Unit Size and Shape in Real Populations

The best way to determine the appropriate sampling-unit size and shape is to approach every
new sampling situation without a preconceived idea of the configuration you will use. Sampling-
unit size and shape should be determined during pilot sampling. If possible, wander around the
population area and study the spatial distribution of the species you will be sampling (for plants,
use pin flags or flagging to improve the visibility of clumps). Attempt to answer the following
questions: 1) At what scale(s) can you detect clumping? 2) How large are the clumps, and what
are the distances between clumps? 3) How long will sampling units need to be to avoid having
many sampling units containing none of the species in them? 4) How narrow will density
quadrats need to be to avoid counting hundreds or thousands of the species whenever the
quadrat intersects a dense clump? 5) How wide an area can be efficiently searched from one edge
of a quadrat? 6) How big a problem will edge effect be?

HOW SHOULD SAMPLING UNITS BE POSITIONED
IN THE POPULATION?

There are three requirements that must be met by a monitoring study with respect to positioning
sampling units in the population to be sampled: 1) some type of random, unbiased sampling
method must be employed; 2) the sampling units must be positioned to achieve good intersper-
sion of sampling units throughout the population; and 3) the sampling units must be indepen-
dent of each other. Before discussing different methods of random sampling, we will discuss
these three characteristics in more detail.

I. Random (unbiased) sampling. Critical to a valid monitoring study design is that the
sample has been drawn randomly from the population of interest. Several methods
of random sampling can be used, many of which are discussed below. The important
point is that all the statistical-analysis techniques available to us are based on know-
ing the probability of selecting a particular sampling unit. If some type of random
selection of sampling units is not incorporated into your study design, you cannot
determine the probability of selection, and you cannot make statistical inferences
about your population. Preferential sampling, the practice of subjectively selecting
sampling units, should be avoided at all costs,
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2. Interspersion. One of the most important considerations in sampling is good inter-

spersion of sampling units throughout the area to be sampled (the target popu-
lation). Although Hurlbert (1984) uses the term “interspersion” to apply to the
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distribution of experimental units in manipulative experiments, the term can also be
applied to sampling units in observational studies. The basic goal is to have sampling
units well interspersed throughout the area of the target population. For this reason,
the practice of placing all the sampling units, whether quadrats or points, along a
single or even a few transects must be avoided. This is true even if the single transect
or few transects are randomly located.

. Independence. Independence means the sampling units are spaced far enough apart

so that measurements are not spatially correlated. For example, if quadrats are not
spatially correlated, high mortality in Quadrat A does not necessarily mean there
will be high mortality in Quadrat B, at least not because of its proximity to Quadrat
A. If your design has quadrats located closely along a transect, each quadrat is in
close proximity to two others, and changes in each quadrat will probably be corre-
lated with two others (or more). In simple random sampling, there will always be
some quadrats located close together simply by chance. The difference is that this
correlation only affects some of the quadrats, and the degree of correlation fluctu-

ates randomly with the spatial location of the randomly placed quadrats.

We discuss eight types of random sampling: simple random sampling, stratified random
sampling, systematic sampling, restricted random sampling, cluster sampling, two-stage sam-
pling, double sampling, and taking a random sample of individuals. These are summarized in
Table 8.1 and are described in more detail below.

Table 8.1. Summary of Randem Sampling Types

SAMPLING ~ RECOMMENDED USES ADVANTAGES DISADVANTAGES

TYPE

Simple Useful in relatively small geographic The formulas necessary to analyze data By chance, some areas within the target

sampling

long as the first sampling unit is
selected randomly and the sampling
units are far encugh apart to be
considered independent. Can also be
used as part of cluster and two-stage
sampling designs.

to the left are met, this is the best type
of sampling design to use. There is
better interpersion of sampling units
than with simple random sampling. The
data can be gathered much maore
efficiently than with simple random
sampling and still be analyzed using the
formulas for simple random sampling.

random areas with homogeneous habitat, when ~ are the simplest of all sampling types. population may be left unsampled. The
sampling the number of sampling units is not travel time is considerable when the
likely to be large. sampling area and/or sample size is
large. Restricted random sampling and
systematic random sampling
outperform simple random sampling
when populations have a clumped
distribution.
Stratified Useful when the attribute of interest Results in more efficient population The mathematic formulas required for
random responds very differently to some estimates than simple random sampling  analysis are more complex than those
sampling  clearly defined habitat features. Since it~ when the attribute measured varies used for simple random sampling.
involves taking a simple random sample ~ With clearly defined habitat features. When the geographic area within any
within each stratum, each stratum stratum is large and/or the number of
should consist of a relatively small sampling units is likely to be large, then
geographic area with homogenous one of the other types of sampling
habitat, and the number of sampling listed below will be more efficient, By
units in each stratum should not be oo chance, some areas within each
large. stratum may be left unsampled.
Systermatic  Useful for any sampling situation, as When the conditions given in the cell In the uncommon event that the

number of possible samples is limited
to fewer than about 25-30 (see text),
systematic sampling may lead o
questionable results; in this situaton
you should use restricted random
sampling.

(Continued)
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Table 8.1. Summary of Random Sampling Types (Continued)

SAMPLING
TYPE

RECOMMENDED USES

ADYANTAGES

DISADYANTAGES

Restricted
random

sampling

Although more useful than simple
random sampling in most situations,
restricted random sampling should be
used only when the number of
patential samples is fewer than 25-30,
Otherwise, systematic sampling is the
better choice.

Like systematic sampling, restricted
random sampling results in better
interspersion of sampling units than
with simple random sampling. If the
number of potential samples is less

than 25-30, restricted random sampling
is better than systematic sampling. The
data can be analyzed using the formulas
for simple randam sampling.

The design is not as efficient as
systematic sampling when the number
of potential samples is greater than
25-30.

Cluster
sampling

Cluster sampling is used to select a
sample when it is difficult or impossible
to take a random sample of the
individual elements of interest. A cluster
of elements is identified, and a random
sample (usually using systematic
sampling) is taken of the clusters. Every
element within each cluster is then
measured. In monitoring, cluster
sampling is most often used to estimate
something about individuals (e.g., mean
height, number of flowersiplant). In this
situation, quadrats are the clusters.

Itis often less costly to sample a
collection of elements in a cluster than
to sample an equal number of elements
selected at random from the
population. Except in rare situations, it
is not practical to take a random
sample of individuals, Instead, the
attribute of interest is measured on
every individual in a sample of quadrats
{which function as the clusters).

All the elements within each cluster
must be measured. If the clusters
contain large numbers of the element
of interest, two-stage sampling is more
efficient. Other disadvantages include
the difficulty in determining how many
clusters should be sampled versus how
large each cluster should be, the more
complex calculations required for
analysis, and the fact that most
statistical sofrware packages do not
include these calculations.

Two-stage
sampling

Similar to cluster sampling in identifying
groups of elements (such as plants) and
taking a random sample (usually using
systematic sampling) of these groups. In
two-stage sampling, however, a second
sample of elements is taken within each
group. Like cluster sampling, the main
use of two-stage sampling is to
estimate some value associated with
individuals.

Same advantages as cluster sampling.
The two types are the only efficient
means of estimating some attribute
associated with individuals. When the
number of individuals in each group
{quadrat) is large, two-stage sampling is
more efficient than cluster sampling.

There are standard deviations
associated with both stages of sampling
{unlike cluster sampling, which has no
standard deviation associated with the
values measured at the second stage).
This results in more complicated
formulas in arriving at estimates of
values and standard errors (although
the standard deviation of the secondary
sample can be ignored as long as the
finite-population correction factor is
not applied to the standard error of
the primary sample).

Double
sampling

Useful when the variable of interest
(e.g.. actual measurements of biomass)
is difficult to measure, but is correlated
with an auxiliary variable (e.g.. ocular
estimates of biomass) that is more
easily measurable. The second variable
is measured in a large number of
sampling units, while the first variable is
measured in only a subset of the
sampling units, The samples are often
taken using systematic sampling.

If the auxiliary variable is relatively
quick to be measured and is highly
correlated with the variable of interest,
double sampling is much more efficient
in estimating a variable that is difficult
te measure than directly measuring the
variable.

The formulas for data analysis and
sample-size determination are much
more eomplicated than for simple
random sampling, and most statistical
software programs do not include the
necessary calculations.

Taking a
random
sample of
individuals

This can only be accomplished in rare
situations. When the objective is to
measure something on individual plants,
itis best to use either cluster or twe-
stage sampling. See text for further
information.

In those few situations where it is
possible to take a random sample of
individuals, the calculations necessary
for analysis are simpler than those for
either cluster or two-stage sampling,

Itis not practical to take a simple
random sample of individuals in most
monitoring situations.
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A simple random sample is one that meets the following two criteria: 1) each combination of a
specified number of sampling units has the same probability of being selected; and 2) the selec-
tion of any one sampling unit is in no way linked to the selection of any other (McCall 1982).
One method for selecting random sampling units in a simple-random-sampling design is
the simple random-coordinate method. While this is probably the most commonly used
method, it has serious problems for many sampling units. As shown in Figure 8.4, random coor-

dinates are selected for each of two
axes. The point at which these inter-
sect specifies the location of a sam-
pling unit. Coordinates that fall out
of the target population boundaries
are rejected. This method will work
for small sampling units such as plots
used to measure frequency,” but it
will not perform well when the sam-
pling units are lines or long rectangles
or when sampling units are points of
the center of a large circular sampling
unit (e.g., bird counts often sample a
circular area with a radius of up to
100m extending from a given sam-
pling point, which often results in a
large part of the sampled area falling
outside a study site). Two problems
with the coordinate method are diffi-
cult to overcome:

1. No unbiased method exists to
deal with randomly located

reject this
i _point
1

x'f—coordinate ﬁ:}(point
L random .
distances —
1

\:\ X-coordinate
. 4

X-axis —
origin —

Figure 8.4, Locating points using the simple random coordinate
method (adapted from Chambers and Brown 1983). Although this
method will work to position points or square quadrats, the grid-
cell method is much better for locating long, narrow quadrats or lines.

points that send a portion of the sampling unit out of the target population (a com-
mon occurrence with large or long sampling units). If you reject such points, your
sample will be biased toward the center of the population (i.e., you will be less
likely to sample the edges of the population). If you “reflect” the line or quadrat
from the population edge back into the population, you bias your sampling toward
the edges of the population.

_This technique introduces the probability of overlapping sampling units. This is, for

example, a major problem with bird surveys, in which some birds can be detected
up to 100m away, necessitating that sampling points be separated by twice that dis-
tance. For quadrats (either rectangular ones, or circular ones located by their center
point) overlap is highly undesirable, because we will not be able to use the finite-
population correction factor discussed later in this chapter. For transect line inter-
cepts, you could address overlap by selecting random compass orientations from
each randomly located point; lines represent an infinite population regardless of
their orientation and so we never use the finite population correction factor. This

?Although such a random selection procedure is justified for sampling with point intercepts, frequency quadrats and biomass
and cover estimation quadrats, the time required to position 100 to 200 or more of these small sampling units makes this pro-
cedure impractical. Instead, some type of systematic approach is usually use.
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approach, however, eliminates the possibility of orienting lines consistently along
the gradient.?

A better method for locating random sampling units is the grid-cell method. The grid-cell
method eliminates the problems associated with the random coordinate method and is one of
the most efficient and convenient methods of randomly positioning quadrats. The sampled pop-
ulation area is overlaid with a conceptual grid (there is no need to actually lay out tapes and
strings to achieve this), where the grid-cell size is equivalent to the size of each sampling unit.
Consider the dense, clumped population example introduced earlier. We have overlaid a grid of
4m x 10m quadrats on this population (Fig. 8.5). If we want to sample ten 4m x 10m quadrats
from this population, we would first divide the population into 125 different 4m x 10m cells, as
shown on Figure 8.5. Since we are sampling without replacement, 125 possible quadrat positions
(5 along the x-axis times 25 along the y-axis) are possible, none of which overlap. Once one is
sampled, it will not be sampled again (at least not during the same sampling period). More infor-
mation on implementing the grid-cell method in the field is given in Chapter 11.

As its name suggests, simple random sampling is the simplest kind of random sampling, and
the formulas used to calculate means and standard errors are easier than with many of the more
complex types of designs discussed below. But unless you are planning to use permanent
quadrats to detect change, simple random sampling should only be used in relatively small geo-
graphic areas where a degree of homogeneity is known to exist. If the sampling area is large
and/or the sample size is relatively large, as it often is for frequency or point-intercept simple
random sampling, the time spent in locating quadrats or points and traveling between locations
can be considerable.

Another problem with simple random sampling is that, simply by chance, some areas may
be left unsampled. Figure 8.6 shows a simple random sample of a hundred 1m x Im quadrats po-
sitioned within a 50m x 100m macroplot. By chance, some large portions of the macroplot did
not receive any sampling units. This can be especially problematic in populations that are
clumped. Computer-simulated sampling (Salzer, unpublished data) suggests that both restricted
random sampling and systematic sampling designs (described below) result in more precise esti-
mates than simple random sampling when sampling clumped distributions (the most common
situation in biologic populations).

Stratitied Random Sampling

Stratified random sampling involves dividing the population into two or more subgroups (strata)
before sampling. Strata are generally delineated in such a manner that the sampling units within
the same stratum are very similar, while the units between strata are very different. Simple ran-
dom samples are taken within each stratum.

Strata should be defined based on the response (of the attribute that you are estimating) to
habitat characteristics that are unlikely to change over time. Examples of characteristics that
might be used to delineate strata are soil type, aspect, major vegetation type (e.g., forest or grass-
land), and soil moisture. You should avoid defining strata based on characteristics related to the
attribute you are estimating, since this is likely to change with time, leaving vou stuck with strata
that are no longer meaningful. For example, if you are interested in estimating the density of
species X, and you note that the east half of the target population is much more densely popu-
lated than the west half, avoid basing your strata on this fact alone. If there is an obvious habitat
feature responsible for this difference such as aspect, then base vour strata on this habitat fea-
ture. If there is no obvious reason for the difference, vou are probably better off using a simple-

*You should orient sampling units to include as much of the gradient variation as possible within the sampling unit. This
maximizes Ifm‘r'abffir}' included within the sampling unit and minimizes the variability between them, and can dramatically
increase the efficiency of the sampling design. See the computer-simulated sampling design example above.
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Figure 8.5. The dense clumped population overlaid with a grid of 4m x 10m quadrats.
There are 125 possible quadrat locations for this size and shape of quadrat. The 4m x
25m quadrat (50 possible quadrat locations) and 4m x 50m quadrat (25 possible quadrat
locations) are also shown. The 4m width was used for illustration only. A better quadrat
design would be thinner (e.g., 0.25m or 0.5m) but would not show up well on the figure.
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Figure 8.6. A simple random sample of 100 Im x Im quadrats positioned within a 50m x 100m macroplot. Simply by

chance, some large portions of the macroplot did not receive any sampling units.

random-sampling procedure, because you might find that your management will result in more
recruitment of species X into the west half of the target population, leaving you with a stratified
random sampling procedure that is less efficient than simple random sampling.

pasture A e

S \ Z s et t sampling units

stream

Figure 8.7. A rare plant population grows in a meadow along a stream and up an
adjacent slope. The population area is grazed in the spring in Pasture A and in the fall
in Pasture B. The meadow has recently been excluded from livestock grazing except
for a short duration low intensity graze in the early spring before green-up. The three
areas are treated as strata in a stratified random sample.

Figure 8.7 depicts a
rare plant population that
occurs within three grazing
pastures, each with differ-
ent grazing regimes. We
decide to use each pas-
ture as a sampling stratum.
Through pilot sampling, we
discover that the meadow
portion of the population is
more variable than the por-
tion growing on the adja-
cent slope in the upland
pasture, and we allocate
more sampling units to that
stratum.

Sampling units do not
have to be allocated in
equal numbers to each stra-
tum. In fact, one of the
benefits of stratified ran-
dom sampling is that, when
the attribute of interest re-

sponds differently to different habitat features, you can increase the efficiency of sampling over
simple random sampling by allocating different numbers of sampling units to each stratum. Sam-
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pling units can be allocated: 1) equally to each stratum, 2) in proportion to the size of each stra-
tum, 3) in proportion to the number of target individuals in each stratum, or 4) in proportion to
the amount of variability in each stratum.

Figure 8.8 illustrates a stratified random sampling scheme used in the U.S. Fish and Wildlife

Service’s National Wetlands Inventory of the United States (Dahl and Johnson 1991). A sample
of many plots, each 4 miles

square, was allocated to three
strata in the state of North Car-
olina. Notice how the coastal stra-
tum, because it has more habitat
variability and greater suspected
wetland density, is sampled more
intensively. This differential sam-
pling intensity, with greater effort
allocated to strata with higher
density and/or greater variability,
is a common feature of stratified
random sampling.

The major advantage of
stratified random sampling is an
increase in the efficiency of popu-
lation estimation over simple
random sampling when the at-
tribute of interest responds very
differently to some clearly de-

fined habitat features that can be

-d ac h inci Figure 8.8. A stratified random sampling scheme. This example, from the
treated as strata. The principa g P
disadvantage is the more compli- National Wetlands Inventory (Dahl and Johnson 1991), shows how a sample

= of many plots, each 4 mi*, was allocated to three strata in the State of North
cated formulas that must be used Carolima.

both to determine allocation of
sampling units to each stratum and to estimate means and standard errors. Since we are taking a
simple random sample within each stratum, the possibility exists that, simply by chance, areas
within one or more strata may be left unsampled. Additionally, each stratum should be somewhat
homogeneous and cover a relatively small geographic area (for plants and stationary animals); oth-
erwise the method will be less efficient than systematic and restricted random sampling.

Refer to Appendix IV for the formulas necessary to calculate sample sizes when using strati-
fied random sampling and for the formulas to calculate statistics. Other good references include
Cochran (1977), Krebs (1998), and Thompson (1992).

Systematic Sampling

A systematic approach is commonly used in sampling plant and animal populations. It is one of
the easiest ways to locate sampling units throughout a sampled population because of low setup
and travel time between sampling units. It also ensures good interspersion of sampling units. The
regular placement of quadrats along a transect is an example of systematic sampling. The starting
point for the regular placement is selected randomly. To illustrate, let us say we decide to place
ten Im? quadrats at Sm intervals along a 50m transect. The selection of the starting point for sys-
tematic sampling must be random. Therefore, we randomly select a number between 0 and 4 to
represent the starting point for the first quadrat along the transect and place the remaining nine
quadrats at 5m intervals from this starting point. Thus, if we randomly select the 3m mark for
the first quadrat, the remaining quadrats will be placed at the 8, 13, 18, 23, 28, 33, 38, 43, and
48m points along the transect. This is illustrated in the transect along the left side of Figure 8.9.
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Figure 8.9. A 50m x 100m macroplot, sampled by 100 Im x Im frequency quadrats. The quadrats are aligned along
transects. Both the transects and the quadrats are systematically positioned with a random start. A random starting point is
selected for the transects along the baseline, while separate random starting points are selected for the quadrats along
each transect.

Systematic sampling with a random starting point is commonly used in animal studies be-
cause it permits easily identifying sampling points and because it generally, but not always, yields
estimates of comparable accuracy and precision to those provided by purely random sampling.
For example, for sampling fishes in small streams, a systematic sampling approach has been rec-
ommended (Hankin and Reeves 1988) because it delivers comparable precision, is generally rep-
resentative, and avoids the work of identifying a complete list of sampling sites required by
random sampling. Litter searches of quadrats for amphibians and small lizards are also frequently
made in a systematic fashion. Similarly, point counts for birds are almost invariably arrayed in a
systematic fashion along counting “routes” or transects.

A common use of systematic sampling in vegetation studies is to facilitate the positioning of
quadrats for frequency sampling and of points for cover estimation. Using this approach, a base-
line is laid across the sampled population, either through its center or along one side of it. Tran-
sects are run perpendicular to the baseline beginning at randomly selected points along the
baseline (if the baseline runs through the middle of the population, transects are run in either of
two directions; the direction for each one can be randomly determined by tossing a coin).
Quadrats or points are then systematically positioned along each transect. The startin g point for
the first quadrat or point along each transect is selected randomly.

Systematic samples, if well designed, can safely be analyzed as a simple random sample.
Milne (1959) analyzed data taken from random and systematic samples of 50 totally enumerated
biologic populations and found that there was no error introduced by assuming that a centric sys-
tematic sample is a simple random sample and by using all the appropriate formulas from ran-
dom sampling theory (Krebs 1998:228). Milne’s (1959) conclusion was that “with proper
caution, one will not go very far wrong, if wrong at all, in treating the centric systematic-area
sample as if it were random.” Note, however, that Milne compared random samples to centric
systematic samples, illustrated in Figure 8.10. The units of a centric systematic sample lie on
equidistant parallel lines (these can be thought of as transects) arranged in a manner such that, in
effect, the area is divided into equal squares (see dotted lines) and a sampling unit taken from
each square. Thus, the sampling units are spaced a considerable distance apart with maximum
interspersion of sampling units throughout the sampled population.

The design shown in Figure 8.9 ensures good interspersion of sampling units throughout the
sampled population. Here, a 50m x 100m macroplot was sampled by a hundred 1m? frequency
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quadrats, with a 100m baseline along the southern edge. The quadrats were aligned along tran-
sects. In this example both the transects and the quadrats were systematically positioned with a

random start. In the case of the transects, a random number between 0 and 9 was selected. That
number was 1. The first transect therefore began at

the Im mark along the baseline, with subsequent

transects beginning at 11m, 21m, up to 91m. In the ! ! !
case of the quadrats, a random number between 0 : > I : :
and 4 was chosen for each transect, the first quadrat q] : [:J L'F
positioned at that point, and subsequent quadrats | : ]| : ll

placed at increments of 5Sm from the first quadrat. | [ JI """"" 6 i T oo 5 & pa

Thus, for transect number 1 the first quadrat was lo- I : | i i

cated at the 3m mark, with subsequent quadrats lo- m : m m

cated at the 8m, 13m . . . 48m marks.* : : :
Good interspersion of sampling units through- | |........ Foni Foctisss. A feeeenannd g ot L eens

out the sampled population is one of the principal | : [ : I

advantages of systematic sampling. Strictly speaking, &I !IB E{:I

however, systematic sampling is analogous to simple | | |

random sampling only when the population being I : | I

Samp]'ﬁd 5 U5 St Mardey (SEE, for example, ........ proseeee . ........ Jreseeanneteena [roseeeesineeans

Williams 1978). Populations in random order are | } ! : :

rare in biology; most natural populations of both [113 : d] |-J|:I

plants and animals exhibit a clumped spatial distrib- I ; I : I

ution pattern. This means that nearby units tend to | |........ { ........ S el ; ................... : ................

be similar to (correlated with) each other. If, in a I : | : |
systematic sample, the sampling units are spaced far [{3 E]l] q]
enough apart to reduce this correlation, the system- ' :

atic sample will tend to furnish a better mean and : : :

smaller standard error than is the case with a ran-

dom sample, because with a random sample one is - ' ;

: ; igure 8.10. A centric systematic sample (adapted
more likEIY to end up with at least some Samphng from Milne 1959). Small squares are sampling units,
units close together (see Milne 1959; discussion of dashed lines are transects, and dotted lines show how
sampIing an ordered popu]ation in Schaeffer et a]. the sampling units fall in the center of each subunit of

. . area.
1979). Computer simulation has validated this con-
clusion. For example, for density estimation, Salzer (unpublished data) found through Monte
Carlo simulations that systematic designs outperform simple random sampling in terms of preci-
sion when sampling clumped populations.

On a cautionary note, systematic sampling for density estimation can lead to questionable
results if the sampling design creates a situation where there are only a small number of potential
samples. For example, consider the macroplot shown in Figure 8.11. Ten 1m x 50m quadrats are
systematically positioned in the macroplot with a random starting point at the 2m position on
the x-axis, and the quadrats spaced at 10m intervals after that. In this case, since the position of
all quadrats is fixed once the first quadrat is positioned, there are only 10 possible samples to
draw from, depending on which of the 10 possible starting points is randomly selected in the first
10m segment of the population (0, 1, 2, 3, 4, 5, 6, 7, 8, or 9). The sampling distribution (distrib-
ution of all possible sample mean values) for this sampling design might resemble a uniform
(flat) distribution instead of the smooth, bell-shaped curve of the normal distribution, because

*What is the sampling unit in Figure 8.9 You have two options: You can treat the sample as if the quadrats had been se-
lected as a simple random sample or you can calculate separate frequency values for each transect and treat the transect as
the sampling unit. The implications of each option will be clearer once you have been introduced to cluster sampling and two-
stage sampling, discussed below.
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Figure 8.11. A systematic sample of 10 Im x 50m quadrats in a 50m x 100m macroplot. Note that there are only 10
possible samples, corresponding to which of the 10 possible starting points in the first 10m segment of the baseline (x-axis).
In this case, the sample started at the 2m mark.

there are only 10 different sample means possible. Treating such a sample as if it were a simple
random sample could result in poor estimates of the sample standard error. The next type of
sampling design, restricted random sampling, solves this problem. Except for this somewhat un-
common situation, however, systematic sampling is preferred over restricted random sampling. If
more than 30 possible systematic samples may be drawn, systematic sampling is acceptable.

Another caution is that situations do arise in which systematic sampling can seriously bias
estimates if the pattern of the sampling units intersects some pattern in the environment (e.g.,
dune ridges and slacks; Goldsmith et al. 1986). One example is estimating food abundance for
wildlife in croplands planted in a regularly repeated fashion. Systematic sampling, depending on
how it was applied, might consistently locate sampling units between or on top of crop rows and
thereby yield substantially different estimates. This has occurred, for example, in studies of avail-
ability of waste corn for waterfowl.

If some periodic pattern does exist, the data analysis will not reveal this, and your estimates,
particularly of standard errors, will be wrong. Although this type of periodic pattern is rare in na-
ture, you should be alert to the possibility.

Restricted Random Sampling

In restricted random sampling, you determine the number of sampling units, n, you will need to meet
your monitoring objective (sample size determination is discussed below), then divide your popula-
tion into n equal-sized segments. Within each of these segments, a single sampling unit is randomly
positioned. The sample of n sampling units is then analyzed as if it were a simple random sample.

Figure 8.12 is an example of a restricted random sampling procedure. This is the same 50m x
100m macroplot as we used in our discussion of systematic sampling. In this case, however, we divide
the x-axis into ten 10m segments. Within each of these segments we randomly select a single quadrat
location. This gives us 10 possible random locations within every 10m segment of the x-axis. Every
quadrat location in the macroplot still has an equal probability of selection. The same technique can
also be applied to the y-axis if there is more than one possible quadrat position along that axis.

The restricted-random-sampling procedure can also be used when the sampling unit is a
transect instead of a quadrat. Divide the population into equal-sized segments and allocate a sin-
gle transect to each segment. If you are locating sampling units such as quadrats or point inter-
cepts along transects (similar to Figure 8.9), you may want to use a combination of the restricted

- -
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Figure 8.12. A restricted random sample of 10 Im x 50m quadrats in a 50m x 100m macroplot. One quadrat is ran-
domly positioned within each 10m segment of the baseline (x-axis).

and systematic designs. If, for example, you decide to run 10 transects, each with 50 point inter-
cepts, perpendicular in one direction from a baseline, you could divide the baseline into 10 equal
segments, randomly locate beginning points for each transect within each of these 10 segments,
and then systematically space the point intercepts along each transect (as in Figure 8.11, except
with points systematically positioned along one edge of each quadrat).

Restricted random sampling is similar to both stratified random and systematic sampling. It
is similar to stratified random sampling in that we have effectively stratified our macroplot into
10 strata. However, unlike stratified random sampling, the strata are arbitrary, and we take only
one sampling unit in each stratum. As with systematic sampling, we divide our population into
equal-sized segments. With systematic sampling, however, only the first sampling unit is ran-
domly determined; all the others are spaced at equal intervals from the first.

Similar to systematic sampling, restricted random sampling results in very good intersper-
sion of sampling units throughout the target population. Furthermore, Salzer (unpublished data)
has shown through simulation studies that restricted random sampling results in more precise es-
timates of density than simple random sampling. He has also demonstrated the procedure to be
more robust than systematic sampling when the number of possible systematic samples are few,
because with restricted random sampling designs you do not constrain the number of potential
samples from which you can draw. The principal disadvantage of restricted random sampling is
that you can, purely by chance, end up with sampling units positioned side-by-side. This can
leave larger portions of the sample area unsampled than is the case with a systematic design.
When the number of potential systematic samples is large enough (more than 25 to 30), you are
probably better off choosing a systematic sample. Otherwise, use the restricted random design.

Cluster Sampling

Cluster sampling® is a method of selecting a sample when it is difficult or impossible to take a
random sample of the individual elements of interest. With cluster sampling, we identify groups
or clusters of elements and take a random sample of these clusters. We then measure every ele-
ment within each of the randomly selected clusters.

SChuster sampling should not be confused with cluster analysis, a technigue used in classification and taxononty.
£ 3 ¢f 4
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In monitoring, cluster sampling is most often used when the objective is to estimate some-
thing about individuals such as parasite loads in animals or the mean number of flowers per
plant. For example, you may want to track the average height of plant X in population Y. There
are too many plants in the population to feasibly measure all of them. Five quadrats are ran-
domly placed in the population, and the heights of all plants within these quadrats are measured
(Fig. 8.13).

Cluster sampling and two-stage sampling are the only two efficient designs that can be used
to sample individual plant and animal characteristics. Examples for application to plant monitor-
ing include estimating number of seeds produced per plant, biomass per plant, and average
height or size per plant. In these examples, a quadrat is employed as the cluster and each plant is
an element. Examples of the application of two-stage and cluster sampling to animal studies in-
clude estimating the size of birds’ eggs (nests are the cluster and eggs are the elements), the num-
ber of eggs per nest (nests may be located using trees or a quadrat as the cluster and nests as the
element), food habits of fish (e.g., a seine catch as the cluster and each fish stomach as an ele-
ment), and the size of beetles (the trap is the cluster and each beetle the element). Sometimes,
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Figure 8.13. An example of cluster sampling to estimate the mean height of plants in a population. Five
quadrats are randomly placed in the population and the heights of all plants within these quadrats are
measured.
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the elements are erroneously treated as independent sampling units. Careful articulation of the
method of positioning sampling units should help avoid this problem.

With animals, cluster sampling is also sometimes of a temporal rather than a spatial nature,
such that repeated counts are made during randomly determined visits to a site instead of making
the single counts at randomly determined times, thereby greatly saving on time needed to reach
sites to make counts.

The advantage of cluster sampling is that it is often less costly to sample a collection of ele-
ments in a cluster than to sample an equal number of elements selected at random from the pop-
ulation (Thompson 1992). It is most efficient when different clusters are similar to each other
and incorporate much variability within. Because individuals near each other tend to be similar,
this condition will not be realized with square clusters (Thompson 1992). Therefore, just as with
simple random sampling for density estimation, cluster sampling using long, narrow quadrats to
delineate clusters will be more efficient than using square quadrats.

Cluster sampling has several disadvantages. First, all elements within each cluster must be
measured. If the clusters contain large numbers of the element of interest, two-stage sampling,
described below, will be more efficient. Second, it is often difficult to figure out how many clus-
ters should be sampled versus how large each cluster should be. Third, more complex calcula-
tions are required. Most statistical software packages do not include these calculations. A worked
example is provided in Appendix IV.

Two-Stage Sampling

Two-stage sampling is similar to cluster sampling in that we identify groups of elements about
which we wish to make inferences. We then take a random sample of these groups. However, in-
stead of measuring every element in each group as we would if doing cluster sampling, we take a
second sample of elements within each group. The groups sampled are called primary sampling
units, while the elements sampled are called secondary sampling units. The secondary sampling
units can be either a simple random sample of elements or a systematic sample of elements. Fig-
ure 8.14 shows a two-stage sampling design. Like cluster sampling, the main use of two-stage
sampling is to estimate some value associated with individual plants. It has also been used to in-
crease the precision of counts of large mammals, for example, deer (Freddy and Bowden 1983)
and wildebeest (Norton-Griffiths 1973).

An example of two-stage sampling is its use in estimating the number of flowers per plant
produced by species X. We might randomly locate a sample of quadrats in the target population.
Within each quadrat we then take a random sample of plants and count the number of flowers
on each plant selected. The quadrats are the primary sampling units and the plants are the sec-
ondary sampling units.

Two-stage sampling may also involve macroplots and quadrats. For example, you are inter-
ested in the mean density per quadrat of a salamander species, and you want to be able to make
statistical inferences to a large area. The area is relatively homogeneous, with no logical basis of
<tratification. Seven 50m x 100m macroplots (primary sampling units) are randomly distributed
throughout the population, and fifteen 0.20m x 25m quadrats (secondary sampling units) are
randomly sampled within each macroplot.

Both these examples involve simple random sampling at both stages. Either or both of the
stages may involve different types of sampling. A common type of two-stage sampling involves
simple random sampling at the primary stage and systematic sampling at the second stage. We
have already seen examples of this: when quadrats or points (secondary sampling units) are sys-
tematically located with a random start along transects, and the transects (primary sampling
units) are run from randomly selected points along a baseline. Of course, the transects could be
positioned using another type of design such as restricted random sampling or systematic sam-
pling. The point is that the two stages can involve different sampling designs.
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Figure 8.14. Two-stage sampling to estimate the number of flowers per plant on a
particular species of plant. Five 4m x 50m quadrats (primary sampling units) are ran-
domly located in the sampled population and three Im x 25m quadrats (secondary sam-
pling units) are randomly located within each of the five larger quadrats. The number of

flowers per plant is counted within all of the selected Im x 25m quadrats.
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The practical advantage of two-stage sampling, compared with a simple random sample of
the same number of secondary units, is that it is often easier or less expensive to observe many
secondary units in a group than to observe the same number of secondary units randomly spread
over the population (Thompson 1992). Travel costs are therefore reduced with two-stage sam-
pling. Two-stage and cluster sampling designs are the only two efficient designs that can be used
to sample individual plant and animal characteristics.

Because sampling occurs at both stages, there are standard deviations associated with esti-
mates of the values at both stages (unlike cluster sampling, which has no standard deviation asso-
ciated with the values measured at the second stage). This results in more complicated formulas
for estimating values and standard errors. A less complicated alternative is to follow Cochran
(1977), ignoring the standard deviation of the secondary sample as long as the finite population
correction is not applied to the standard error of the primary sample. For example, if we had a
sample of quadrats arranged along a transect, we could simply use the mean of each transect’s
collection of quadrats as our unbiased estimate of the transect value. We then treat the collection
of transect values as a simple random sample. This allows us to use standard statistical computer
programs to perform our analysis.

Platts et al. (1987) provides good worked examples of calculating means and standard errors
from two-stage sampling when you wish to consider the standard deviation of the secondary
sample (Appendix 1V). More detailed discussions can be found in Cochran (1977:279), Krebs
(1998), and Thompson (1992).

Comparison of Sampling Designs: the Sampling Unit Revisited

Often we will arrange small sampling units (quadrats for measuring frequency, visual estimates
of percent cover and biomass or point intercepts for measuring cover) along a transect. Should
these be considered a random sample of the smaller units (using the transects only for locating
these units) or should the transect itself be considered the sampling unit?

Technically, when we use transects as the sampling units, whether for frequency quadrats,
cover point estimates, biomass quadrats, or visual cover estimation quadrats, we are really con-
ducting two-stage sampling. The transects are the primary sampling units, and the quadrats or
points are the secondary sampling units. Standard deviations are associated with both the pri-
mary sample of transects and the secondary sample of quadrats or points. Two-stage designs take
into account both sets of standard deviations. The result is a much more complex set of equa-
tions that standard statistical programs will not calculate. Although we could subject these data
to the more complex formulas of two-stage sampling, there is no need to do so. Cochran
(1977:279) points out that we can ignore the standard deviation of the secondary sample as long
as we do not use the finite-population correction factor in our analysis. We can simply use the
mean of each transect’s collection of quadrats or points as our unbiased estimate of the transect
value.

For small quadrats that are used to visually estimate percent cover or estimate biomass or
estimate density of small animals, it is generally best to group those along a transect and consider
the transect the sampling unit. This allows us to use small quadrats of practical size in the field
while taking advantage of the benefits of elongated sampling units (the transects) that cross the
variability inherent in the population. By treating the transects as the sampling units, we get the
best of both worlds.

For frequency or point intercept cover data you should usually treat the quadrats or point
intercepts as the sampling units rather than the transects along which these are located. Esti-
mates will be more precise and significance tests more powerful because of the larger sample
sizes realized by using quadrats or point intercepts rather than transects as the sampling units.
There are at least two situations, however, in which you might want to treat the transects as the
sampling units. The first of these is when the transects are permanent (see discussion on perma-
nent vs. temporary sampling units below). If you have reason to believe that the average values
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per transect are more correlated between years than are the quadrat or point values, you may
choose to analyze the transects rather than the quadrats or points as the sampling units.”

The second situation in which you might want to treat the transects as the sampling units
when systematically sampling frequency quadrats or cover point intercepts is when the quadrats
or points are not far enough apart to be considered independent. This is more likely to be a prob-
lem in already established studies, where quadrats or points were placed contiguously or a very
short distance apart. Hopefully, you will design new studies in such a manner that the quadrats
or points are spaced far enough apart to achieve independence.

Independence means that the sampling units are not spatially correlated, that the response
of the species in Quadrat A is not related to the response of the species in Quadrat B because of
their proximity to one another. If the quadrats or points are far enough apart that they can be
considered independent, we have the benefit of increasing our sample size dramatically (because
the point or plot is the sampling unit instead of the transect) while keeping the field efficiency of
locating sampling units rapidly along a transect. Conversely, the contiguous placement of
quadrats along a transect or the separation of such quadrats by small distances (e.g., one “pace”),
practically ensures that adjacent sampling units will be correlated. This will result in an underes-
timation of the standard error and questionable results

Determining how far apart to place sampling units along a transect for them to be consid-
ered independent can be difficult. Chapter 12 discusses this issue in more detail for plants. This
is a particular problem for animals as well, especially those that are detected at long distances by
their calls and hence easily double-counted. These issues are discussed in Chapter 13. Probably
the best way to determine spacing of sampling units along transects is to consider the degree of
interspersion of your design. The goal is to have sampling units interspersed as well as possible
throughout the area of the target population (see previous discussion on interspersion). Once
you have delineated the area you intend to sample, strive for a design in which the spacing be-
tween transects is about the same as the spacing between sampling units. If you do this, it is
likely that the issue of independence will take care of itself.

Double Sampling

Double sampling, sometimes called two-phase sampling, involves the estimation of two vari-
ables. Because one of these variables, the variable of interest, is difficult and expensive to mea-
sure, it is measured in only a relatively small number of sampling units. To improve the rather
poor precision of the estimate that normally results from a small sample, an auxiliary variable
that is much easier to measure is estimated in a much larger number of sampling units. The vari-
able of interest is measured in a subsample of the sample of units in which the auxiliary variable
is measured.

The idea of double sampling will become clearer with examples. The technique is often
used in estimating aboveground biomass in rangelands. Because it is slow and expensive to clip,
dry, and weigh biomass in many sampling units, observers train themselves to visually estimate
biomass. Once trained, the observers randomly locate quadrats within a target population and vi-
sually estimate the biomass in all the quadrats. For example, 100 quadrats are so estimated.
Then, in a subsample of these quadrats, say 10, the visual estimates are made as in the other
quadrats, but after these estimates are recorded, the aboveground biomass is clipped, dried, and
weighed. Thus, for these 10 quadrats we have two estimates of biomass, one from the visual esti-
mate, the other from the actual weighing of the clipped biomass.

“lt is highly unlikely that you will be able to accurately reposition point intercepts as permanent sampling units, but a transect

of point intercepts may be highly correlated from vear to year and thus be suitable for consideration as a permanent sampling
nHil.
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Double sampling is also used in forest surveys to estimate the volume of trees in a stand.
Trained observers make a visual estimate of volume for a large sample of standing trees, while ac-
curate volume measurements that require felling are limited to a small subsample of trees
(Thompson 1992).

In wildlife management, double sampling may be used for surveys of breeding waterfowl.
Aerial surveys estimate abundance over an extensive area, but a subsample of the survey areas
are subjected to more thorough ground surveys. The ground surveys are used to adjust the bias
inherent in aerial surveys (Routledge 1999).

In all these cases, the subsample on which the variable of interest is actually measured is more
accurate, but the precision of the estimate can be greatly improved by considering the measure-
ments on the auxiliary variable. The improvement in precision depends on how well the auxiliary
variable correlates with the variable of interest. In the examples given above, this relates to how
well the trained observers actually estimate biomass, tree volume, or abundance of waterfowl.

If the auxiliary variable is relatively quick to be measured and is highly correlated with the
variable of interest, double sampling is much more efficient in estimating variables that are diffi-
cult to measure compared to directly measuring the variable in all sampling units. A disadvantage
is that the formulas for data analysis and sample-size determination are much more complicated
than formulas for simple random sampling. Refer to Cochran (1977:327-358) or Thompson
(1992:139-147) for the formulas needed to analyze double-sampling data.

Taking a Simple Random Sample of Individual Plants or Animals

Let us say that we want to estimate something about a population of individual plants such as
their mean height or the mean number of flowers per plant, and that the population is too large to
measure this variable on every single plant in the population. Easy, you say; we will just take a
simple random sample of plants, measure the variable on the sample,
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and calculate the mean and standard error for the sample. We can o o0 oo
then construct a confidence interval around the estimate at whatever PR L I
confidence level we choose (e.g., a 95% confidence interval). Al- |0 1 2 3 4 5 6 7
though it might seem logical to take a simple random sample of plants, meters

for most plant populations this is not feasible.

One way that is often—and incorrectly—used is to select a ran- Figure 8.15. Distribution of

dom sample of points in the population and to take the nearest indj- ndviduals of plant species X

: - f Yo 'shie wiars Iv if th aleng a 10-meter transect. A
vidual to each of these points. Unfortunately, this works only if the ndomly positioned point on
population of plants or animals is randomly distributed, a condition the transect will be far more
rarely met by natural populations. If, as is typically the case, the indi- likely to be closest to the indi-

idual tially distributed in patches, this technique most decid- '1ov2, 2 the 3m mark than to
viduals are spatially distributed in patches, this technique most decid- ¢ the other piants.
edly will not result in a simple random sample of individuals.
Consider Figure 8.15, which shows the distribution of individuals of a hypothetical plant species
along a 10m transect. Note that nine of the ten individuals are clumped in the last 3 meters of
the transect, while a single individual occurs at the 3m mark. A randomly positioned point along
this transect would have about a 50% probability of being closest to this isolated individual and
about a 20% chance of being closest to the individual at the 7m mark. The probability of the
point lying closest to any of the other eight individuals is much less.

Thus, in a clumped population of plants, a "random” sample of individuals chosen by tak-
ing the individuals closest to randomly located points will be biased toward those individuals
that are isolated from the majority of the population. These individuals may either be much
larger than the majority of plants in the population because of reduced intraspecific competi-
tion or much smaller because they occupy suboptimal habitat. Let us say we are interested in
estimating the mean height of such a population. By biasing our estimate toward the isolated
plants in the population we may greatly underestimate or overestimate the mean height of such
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a population. The same is true for any other attribute associated with individual plants that we
may wish to estimate such as number of fruits per plant. Obviously, for populations of plants
that follow a clumped or patchy distribution—which is by far the majority of populations—
such a sample of individuals cannot be used to adequately characterize the population.

How, then, can you take a random sample of individuals? One way is to completely enu-
merate every individual in the population by, for example, mapping every individual and num-
bering each one from 1 to n. A simple random sample could then be taken by drawing random
numbers between 1 and n. This, of course, would be extremely time-consuming except for small
populations, in which case you might be able to measure the attribute on every individual in less
time. For example, if you are interested in mean height of plants, you could simply measure the
height of every plant in the population and not sample at all. If, however, you need to estimate
the mean number of flowers per plant and each plant has several hundred flowers, selecting indi-
vidual plants randomly from a complete list might be a reasonable approach, although for most
practical purposes it is far too time-consuming.

Another possibility is to take a systematic random sample of individuals. With this method you
gather information from every nth individual in the population. This method will work if you are
planning to conduct a complete census of the population, but you are also interested in estimating
some attribute from a subset of the individuals (e.g., number of flowers/plant). Before you start you
need an estimate of the following two types of information: 1) the approximate size of the popula-
tion, and 2) the approximate number of individual plants you will need to sample (calculated as a
proportion of the total population size). For example, if you estimated a total population size of 1000
plants and your sample-size calculations from pilot sampling identified a sample size of 100 plants,
you would count the number of flowers on every 10th plant encountered. You choose a random
number between 1 and 10. Say the number is 4. Then, starting at one edge of your population you
systematically count the plants. You place a pin flag next to plant number 4, another next to plant
number 14, and so on until you have counted all the plants. You can then come back and count the
flowers on the flagged plants. This sample can properly be analyzed as a simple random sample.

The most practical approach to estimating attributes of individual plants and animals usu-
ally employs cluster sampling or two-stage sampling designs using quadrats as primary sampling
units. In a cluster sample you would measure the attribute on all the plants in the primary sam-
pling unit (the quadrat). If individuals are still too numerous within the quadrat to measure all of
them, you could employ a two-stage sampling design by positioning smaller quadrats (secondary
sampling units) within each large quadrat (primary sampling units).

SHOULD SAMPLING UNITS BE PERMANENT OR TEMPORARY?

A critical decision in sampling designs for monitoring is whether to make your sampling units
temporary or permanent. When sampling units are temporary, the random sampling procedure
is carried out independently at each sampling period. For example, your sampling objective in-
volves detecting change in density over time of a plant species in a 50m x 100m macroplot. In
the first year of sampling you place twenty-five 0.5m x 25m quadrats within the macroplot by
randomly selecting 25 unique sets of coordinates and counting the number of the species in each
quadrat. In the second year of sampling, you place another twenty-five 0.5m x 25m quadrats by
randomly selecting a new set of coordinates and counting the number of the species in each
quadrat. The sampling units (quadrats) in this example are temporary, and the two samples are
independent of each other.

Using the same sampling objective, you could decide to use permanent quadrats. In the first
year of sampling you randomly place the 25 quadrats as described above and count the number
of individuals in each quadrat. This time, however, you permanently mark the locations of the
25 quadrats. In the second year of sampling, you count the number of individuals in the same
quadrats. In this example the sampling units are permanent, and the two samples are dependent.
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The principal advantage of using permanent instead of temporary sampling units is that for
many species the statistical tests for detecting change from one period to the next in permanent
sampling units are much more powerful than the tests used on temporary sampling units. This
advantage translates into a reduction in the number of sampling units that must be sampled to
detect a certain magnitude of change.

To see why this is so, let us consider the process used in comparing the samples between
two periods when using permanent quadrats. If we were using temporary quadrats, we would
calculate separate means and standard errors for the two samples and compare these using a sta-
tistical test (such as a t-test) for independent samples (see Chapter 9). With permanent quadrats,
however, we calculate only one mean

and one standard error. This requires

some explanation. Each quadrat at Quadrat | Number of Number of |Difference Between
time one is paired with the same Number | Plants in 1993 | Plants in 1994 1993 and 1994
quadrat at time two. The data from p 5 5 0
which we calculate the mean and stan- > 5 s 5
dard error consists of the set of differ-

ences between each of the quadrats at 3 3 3 0
time one and its corresponding quad- 4 6 6 0
rat at time two. For example, we 5 3 3 0
randomly positioned five permanent PR AISRSREE O
quadrats in a population and counted

the number of plants in each quadrat siandord-error-0

in 1993 and again in 1994. Data from
these permanent quadrats yielded the Table 8.2. Density Data Taken From Five Permanent Quadrats in
values in Table 8.2. 1993 and 1994.

Note that the permanent quad-
rats are extremely effective at detecting the lack of change from year to year. Because in our ex-
ample the difference between 1993 and 1994 was zero in every quadrat, there is no variation
between sampling units, and the standard error is actually 0. Had temporary quadrats been used
in both years, it is quite likely that the estimates for each year would have been different just be-
cause of chance. For this reason more temporary sampling units (perhaps many more) would
have been required to reach the same conclusion that no change had occurred.

Because we are interested only in the change that takes place within each permanent sam-
pling unit between two periods, the difference between sampling units at either period is not
nearly as important as it is when using temporary quadrats. Consider the following example. To
detect change in cover of species X between two periods, 10 transects were randomly posi-
tioned in the target population in 1990. The beginning, middle, and end points of each transect
were permanently marked. Fifty points were systematically positioned (with a random start)
along each transect and “hits” recorded on canopy cover of species X. The estimate of cover
along each transect is then this number of hits divided by the total number of possible hits, 50.
Thus, a transect with 34 hits would have a cover estimate of 68% or 0.68. The data from these
two years are shown in Table 8.3. (This example is also displayed graphically in Figs. 9.10 and
9.11 of Chapter 9.)

Even though the cover estimates are highly variable between transects for both 1990 and
1994 (for example the mean cover for 1990 is 0.44 with a 95% confidence interval of 0.27 to
0.62), the standard error of the mean difference is relatively small. A 95% confidence interval
around this mean difference is =0.02 to —0.12. In fact, in lieu of doing a paired statistical test
(such as a paired t-test), you could simply look at the 95% confidence interval around the mean
difference to see if it includes 0. If not, then you can declare the change significant at a P value of
0.05 (P values are explained in Chapter 9).

If you had collected these data using temporary transects (i.e., independent samples at both
sampling periods), you would have concluded that no change took place. In fact, with the large
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degree of variability between transects,
Transect | Cover in Cover in |Difference Between you would have needed unreasonably large
Number 1990 1994 1990 and 1994 numbers of transects to detect the change
1 0.22 0.20 0.02 that only 10 permanent transects were
2 0.32 0.26 -0.06 able to detect.

This simple comparison suggests that

3 0.06 0.06 0.00 ; ;
permanent sampling units would always be
4 0.86 0.80 -0.06 advantageous, but their value must be bal-
5 0.62 0.58 -0.04 anced against their disadvantages. Time
6 0.54 0.50 -0.04 and equipment costs associated with per-
7 0.50 032 018 manent sampling units' are !}igher than
. = e T temporary ones. Sampling units must be
* - : marked well with permanent markers.
4 0.36 0.18 -0.18 These can be costly and time-consuming
10 0.68 0.64 -0.04 to install during the first year and difficult
Mean difference -0.07 to find on subsequent years. Permanent
markers may not be feasible in some situa-

Standard error 0.02 : 2

tions because of the nature of the habitat

or for safety reasons (see Chapter 5).
Table 8.3. Cover Values Taken Along 10 Permanent Transects Another disadvantage of a design
of:50 Palrics Bachiin 1930:ard £ 994, using permanent sampling units is that you
usually need 2 years of data to determine
adequate sample size. The only exception to this is when you have some basis to estimate the de-
gree of correlation (the correlation coefficient) of sampling units between years when estimating
means (e.g., density sampling) or a model of how the population is likely to change when estimat-
ing proportions (e.g., frequency sampling). We will discuss this at more length in the next section.

Impacts either from investigators or from animals may bias your results. By going back to
the same sampling unit locations each year, you might negatively impact the habitat in or near
the permanent sampling units. In addition, permanent markers may also attract wildlife, domes-
tic livestock, wild horses, or burros. This might lead to differential impacts to the vegetation in or
near the sampling units. If markers are too high (e.g., t-posts or other fence posts), livestock may
use the markers for scratching posts and differently impact the sampling units. Wildlife impacts
may also occur. Raptors, for example, might use the markers as perches; this could result in
fewer herbivores in the sampling units than elsewhere in the target population, with resulting
differences in the attribute being measured. Songbirds also might use the perches, defecating
seeds and changing the plant community.

The advantage of permanent sampling units varies depending on degree of correlation be-
tween two measurements. Permanent sampling units will be the most advantageous when there
is a high degree of correlation between sampling-unit values between two periods. This condition
often occurs with long-lived plants (e.g., trees, shrubs, large cacti, or other long-lived perennial
plants and long-lived and relatively sedentary animals). If, however, there is low correlation be-
tween sampling units between two periods, then the advantage of permanent quadrats is dimin-
ished. This could occur, for example, with annual plants, if their occurrence in quadrats one year
does not greatly depend on their occurrence in the previous year. Small mammals and many in-
sects with highly mobile populations provide another example. Even for these species, however,

permanent quadrats may still outperform temporary quadrats if recruitment most often takes
place near parents.

Permanent Sampling Units to Estimate Density

Let us examine two very different situations involving permanent density quadrats. Figure 8.1
compares sample sizes needed to detect different levels of change in density in a clumped popu-
lation of 4000 plants using permanent and temporary quadrats. All sampling was done with
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0.25m x 50m quadrats. In this example,

there was no recruitment of new plants;
all change between year 1 and year 2
was the result of plant mortality. This
created a strong correlation between
quadrat counts between the two periods
for the low mortality changes. The
x-axis shows the percent change in
mean plant density (equivalent to per-
cent mortality in this example). The
y-axis shows the number of quadrats
that needed to be sampled to detect the
true population change with false-
change and missed-change error rates
both set at 0.10. When the change in
mean plant density between the first
and second sampling periods was less
than 50%, permanent quadrats were
much more effective than temporary
quadrats at tracking the change. For
example, for detecting a 5% change,
22 permanent quadrats performed as
well as 338 temporary ones!

The advantage of permanent
quadrats occurs when counts between
two periods correlate with one another.
This is true in the situation depicted in
Figure 8.16 because no new plants show

sample size (# of quadrats)

& temporary quadrats
B permanent quadrats

: : 3 O —T—TT1T 7T 1T T3
up in new locations. The opposite ex- 5 1505 25 35

treme, illustrated by Figure 8.17, shows percent change in mean plant density

| e SR Sl NN (B NN ST B B |

population changes caused by 100%

PR T T TR

True mean at first sampling period = 10 plants/quadrat with 0.25m x 50m quadrats.

mortality of the original population

combined with various levels of recruit- Figure 8.16. Sample sizes needed to detect different degrees of

f | . fatil population decline from an artificial clumped population of 4,000
ment from plants in completely new po- plants using temporary vs. permanent quadrats. All changes are due to
sitions. Permanent quadrats no longer morlity of the original population without any recruitment of new

provide any advantage over temporary planr.s.'Note the much better performance of permanent quadrats in
; detecting changes below 50%.

ones, and the disadvantages of perma-

nent quadrats would lead you to a tem-

porary quadrat design.

Most populations will show a combination of mortality and recruitment, as opposed to the
extreme situations shown in Figures 8.16 and 8.17. For most species, permanent quadrats will
provide greater precision with the same number of quadrats or equivalent precision at smaller
sample sizes, because the locations of new individuals will likely be correlated with the location
of old individuals given typical patterns of reproduction. You must balance the magnitude of this
increase in precision (or reduction in sample size) against the disadvantages of using permanent
sampling units.

Permanent Frequency Quadrats and Points

The discussion so far has centered on the use of paired quadrats for estimating density. This type
of sampling is analyzed by means of a paired t-test (this will be covered in Chapter 9). The
paired t-test would also be used to analyze changes in paired quadrats used to estimate cover and
to analyze changes in permanent transects such as those used for line intercept sampling or for
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sample size (# of quadrats)
g

1004
504 < temporary quadrats
i m permanent quadrats
0 T T T T T T T 1

T ] ] T | 1 1 T

5 15 25 35 45 55 g 75 ' g5 | 9
percent change in mean plant density

True mean at first sampling period = 10 plants/quadrat with 0.25m x 50m quadrats.

Figure 8.17. Sample sizes needed to detect different degrees of population de-
cline from an artificial clumped population of 4,000 plants using temporary vs. per-
manent quadrats. All changes result from 100% meortality of the ariginal population
with various levels of random recruitment. Temporary and permanent quadrats
perform about the same in this situation.

point or quadrat sampling in systematic
sampling designs (when the transects, as
opposed to the quadrats or points, are
treated as the sampling units).

When frequency quadrats or points
are treated as the sampling units, a dif-
ferent set of tests is used to determine if
a statistically significant change has
taken place. The chi-square test is used
when these types of sampling units are
temporary (i.e., randomly located in
each year of measurement), while Mc-
Nemar's test is used when the quadrats
or points are permanently located in the
first year of measurement. These tests
are discussed in Chapter 9, but it is im-
portant here to point out that—just as
for permanent designs that use transects
or quadrats for estimating density or
cover—it is sometimes much more effi-
cient to make use of permanent fre-
quency quadrats or points.

Salzer (unpublished data) con-
cludes that under certain population-
change scenarios, permanent frequency
quadrats offer large reductions in sample
size over those required for temporary
quadrats. In the most extreme example,
87 permanent quadrats perform as well
as 652 temporary quadrats in detecting
a 5.5% decline in frequency (with the
false-change and missed-change error
rates both set at 0.10). In other situa-
tions, little difference exists between
permanent quadrat designs and tempo-
rary quadrat designs.

The sample-size differences be-

tween temporary and permanent frequency designs depend on the particular nature of popula-
tion changes. For this reason, the determination of whether to use permanent or temporary
frequency quadrats must be evaluated on a case-by-case basis, taking into account the life history
of the species, the sample size advantages of using the permanent design, and the disadvantages

associated with designs using permanent quadrats.

Appendix II contains more information on the use of permanent frequency designs and

should help you decide when to use one.

HOW MANY SAMPLING UNITS SHOULD BE SAMPLED?

An adequate sample is vital to the success of any successful monitoring effort. Adequacy relates
to the ability of the observer to evaluate whether the management objective has been achieved.
It makes little sense, for example, to set a management objective of increasing the density of a
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changes in density of less than 50%.

Deciding on the number of
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You should assess this variability
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positioning the sampling units in the popu
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pling and is discussed below.
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puter program) will ca
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e variation in t

. Sample-size formulas and comp
that sampling units are positioned
The formulas and programs also as
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sume a distribution
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size equations assume
will always be the case if you are estimating cover us
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quadrats, then you should account
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in the area to be sampled. The sample-size formulas
clude a correction factor called the Finite Population
sampling more than 5% of a population, applying the
ing the necessary sample size. Appen
sample-size determination.’

Precision increases with sample siz
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sample size will not likely detect

we refer to as “sample size”)
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d to specify how prec
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r. This is discussed above.
of sample means (a sampling
a normal distribution. If your
I not be true for small sample

finite populations. We intro-
ms and standard, sample-
ling from is infinite. This
ing either points or lines, be-
you are sampling 2 relatively
biomass assessments in
are sampling from a finite
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provided in Appendix Il in-
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FPC “rewards” you by reduc-
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Figure B.18. Influence of sample size on level of precision. Sample sizes necessary to achieve different
levels of precision at a constant standard deviation of 10. Note that there is no effective improvement in
precision after about n = 30.

(parameter estimation) with specified levels of precision do not account for the ran-
dom nature of sample variances. They do not include a “level of assurance” (also
known as a tolerance probability) that you will actually achieve the conditions speci-
fied in the sample-size equations and obtain a confidence interval of a specified
width. Blackwood (1991) provides a layperson’s discussion of this topic and reports
the results of a simulation that illustrates the concept. Kupper and Hafner (1989)
provide a correction table to use with standard, sample-size equations for estimates
of single population means or population totals. A modified version of this table and
instructions on how to use it are included in Appendix II.

Information Required for Calculating Sample Size

Appendix II gives equations for calculating sample sizes for the following sampling objectives:

1.

n

Estimating means and totals

2. Detecting differences between two means when using temporary sampling units
3
4

. Estimating a proportion

Detecting differences between two means when using permanent sampling units

. Detecting differences between two proportions when using temporary sampling

units

. Detecting differences between two proportions when using permanent sampling

units

Equations for calculating sample size for cluster samples, two-stage samples, and stratified ran-
dom samples are given in Appendix IV. Computer programs are also available that implement
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these equations to calculate sample size ® Both the formulas and programs require you to insert
some of the following values from your objectives (see Chapter 14) and your pilot sampling:

» Estimating means and totals. You must specify the precision desired (confidence in-
terval width), the confidence level, and an estimate of the standard deviation among
sampling units,

 Detecting differences between two means when using temporary sampling units. You
must specify the false-change error rate, the power of the test, the magnitude of the
smallest change you wish to detect, and an estimate of the standard deviation (the stan-
dard deviation among sampling units is usually assumed to be the same for both periods).

e Detecting differences between two means when using permanent sampling units.
You must specify the false-change error rate, the power of the test, the magnitude
of the smallest change you wish to detect, and an estimate of the standard deviation
(this is the standard deviation of the differences between the paired sampling units,
not the standard deviation of the population being sampled in the first year).

¢ Estimating a proportion. You must specify the precision desired (confidence interval
width), the confidence level, and a preliminary estimate of the proportion to be esti-
mated (if you do not have any idea of what proportion is to be expected, you can
conservatively estimate the sample size by assuming the proportion to be 0.50).

e Detecting differences between two proportions when using temporary sampling
units. You must specify the false-change error rate, the power of the test, the magni-
tude of the smallest change you wish to detect, and a preliminary estimate of the
proportion in the first year of measurement (using a value of 0.50 will conserva-
tively estimate the sample size).

» Detecting differences between two proportions when using permanent sampling
units. You must specify the false-change error rate, the power of the test, the magni-
tude of the smallest change you wish to detect, and an estimate of the sampling-unit
transitions that took place between the 2 years. This last estimate is specific only to
this design and is discussed separately in Appendix II.

Your management and sampling objectives already include most of the information re-
quired to calculate sample size using either the equations of Appendix Il or the computer pro-
grams. What is missing is 1) an estimate of the standard deviation, for those situations where you
wish to estimate a mean value or detect change between two mean values; and 2) a preliminary
estimate of the population proportion, when estimating a proportion or detecting change be-
tween two proportions using temporary sampling units. For proportions you have the flexibility
of simply entering 0.50 as your preliminary estimate of the population proportion (this provides
a conservative estimate of sample size). Alternatively, you can use an estimate derived from pilot
sampling. When dealing with mean values, however, you must have an estimate of the standard
deviation. This is the subject of the next section.

Sequential Sampling to Obtain a Stable Estimate
of the Mean and Standard Deviation
In several places in this chapter we have stressed the need for pilot sampling. The principal pur-

poses of pilot sampling are to assess the efficiency of a particular sampling design and, once a par-
ticular design has been chosen, to generate the values needed for calculating the sample size

SSurprisingly, many of the general statistical programs, despite their expense, do not include rowtines for calculating sample size.
Thomas and Krebs (1997) reviewed 29 computer programs for calculating sample size; a link to an online copy can be found on our
web page. Several freeware or shareware programs are available. Links to these can also be found on our web page (see Preface).
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required to meet the sampling objective. Pilot sampling enables us to obtain stable estimates of
the population mean and the population standard deviation and to calculate the coefficient of
variation. The estimate of the standard deviation derived through pilot sampling is one of the

The coefficient of variation (CY) is
calculated by dividing the sample
standard deviation by the sample mean.
The coefficient of variation is useful
because, as @ measure of variability, it
does not depend upon the magnitude
and units of measurements of the data.
This allows direct comparison of CV’s
from different studies and of different
sampling designs. It also enables us to
derive estimates of sample size when we
do not have data from pilot studies but
do have an idea of the magnitude of CV
from similar studies and sites.

values we use to calculate sample size, whether we use the
formulas of Appendix II or a related computer program. Se-
quential sampling is the process we use to determine whether
we have taken a large enough pilot sample to properly evalu-
ate different sampling designs and/or to use the standard devi-
ation from the pilot sample to calculate sample size.

We begin by gathering pilot sampling data using some se-
lected sample size. The selection of this initial sample size will
depend upon the relative amount of variation in the data—if
many of the sampling units yield numbers similar to one an-
other, then you may want to perform the first sequential sam-
pling procedure after n = 8 or 10. If you see high variation
among the sampling units, then you may want to start with a
larger number (e.g., n = 15) or, perhaps preferably, consider
altering the size and/or shape of your sampling unit before

doing the first iteration of the sequential sampling procedure.

Calculate the mean and standard deviation for the first two sampling units, calculate it again
after putting in the next sampling unit, and then repeat this procedure for all of the sampling
units sampled so far. This will generate a running mean and standard deviation. Look at the four
columns of numbers on the right of Figure 8.19 for an example of how to carry out this proce-

4.00 Running means and standard deviations
n Planis Mean SD n  Plants Mean SD
1 1 1.00 26 1 315 307
2 2 150 071 27 8 333 315
3 0 100 1.00 28 7 346 317
4 9 300 408 29 2 341 312
5 5 340 365 30 9 360 323
& 7 400 358 31 1 3852 321
3.50 7 1 357 3.46 32 9 369 33
B 8 D 313 3.44 33 6 376 3.28
E 9 8 367 381 34 7 385 328
.g 10 1 340 350 35 6 391 325
E 11 0 309 348 35 1 383 324
o 12 0 283 343 ar 6 388 321
E 13 4 282 330 38 3 387 3V
g 14 4 3.00 319 ag 1 379 318
§ 3.00 15 2 293 3.08 40 1 373 315
16 0 275 307 41 5 385 322
17 4 282 298 42 3 3B3 318
18 0 267 297 43 3 381 315
19 7 289 305 44 1 375 3.14
20 5 300 30 45 7 382 3.14
21 3 300 293 a6 3 380 31
22 1 291 289 47 4 381 3.08
250 ; ; ; . ; 23 9 317 310 48 9 392 3.3
5 10 15 20 25 30 35 40 45 50 24 7 333 3913 49 4 392 310
Sample size 25 1 324 310 50 0 3848 a3az

Figure B.19. A sequential sampling graph. Running means and standard deviations are plotted for increasing sample sizes.

MNote how the curves smooth out after n = 35.
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dure. Most hand calculators enable you to add additional values after you have calculated the
mean and standard deviation, so you do not have to input the previous values again.

Use graph paper (or preferably a computer spreadsheet program) to plot the mean and
standard deviation against sample size (Fig. 8.19). We suggest starting your graph at n = 3 or
n = 5 for reasons that will become clear later. You are looking for a smoothing of the graph, sug-
gesting the mean and standard deviation have stabilized.

A laptop or field computer is extremely valuable for creating sequential sampling graphs
during a pilot sampling program. Spreadsheet programs allow you to enter your data in a form
that can later be analyzed (saving time on later data entry) and at the same time create a sequen-
tial sampling graph of the running mean and standard deviation. You can also reorder the data
(as though you had measured the sampling units in a different order) and replot the sequential
sampling graph.

Now, let us apply these concepts. Examine Figure 8.20. The graph shows two sampling se-
quences of the same population using the same sampling units. The difference between them is
that, simply by chance, in the first sequence several plots with large numbers of plants were the
first to be sampled, while in the second sequence the first plots to be sampled had only a few
plants (or none). Where would you stop sampling in either of these sequences (consider the
curve "smoothed”)? One strategy would be to reorder the sampling units and evaluate alternative
sequential sampling graphs. A better strategy would be to re-evaluate the sampling design. Look
again at Figure 7.2 in Chapter 7. Do you think the 0.4m x 10m quadrat is an efficient sampling-
unit design? If, after sampling 20% to 30% of the possible sampling units, your sequential sam-
pling graph has not stabilized, you should definitely reconsider your design. Figure 8.21 shows a
good sampling design with the curve smoothing at about n = 12. The samplers could have saved
a substantial amount of effort by stopping long before they did.

Figure 8.22 illustrates the problems that may arise from plotting your graph beginning with
the first data point. Here, a large initial value of six plants and the scale of the y-axis in Figure
8.22A give an illusion of smoothing. Figure 8.22B shows a graph of the same data reordered,
with the first quadrat containing only two plants. Even more important, in this example the sam-
pler should have recognized that a problem existed in the sampling design by the time they had
sampled n = 20 (or earlier). A sequential sampling graph showing a repeated pattern of spikes
followed by gradual declines is indicative of a poor design. The spikes are quadrats containing
many of the species. The gradual declines are caused by encountering several quadrats sequen-
tially with zero observations in them. In practice, if more than a quarter of your initial 10
quadrats contain none of the species, stop immediately and reevaluate your sampling-unit size
and shape. Another hint that a problem exists in this sampling design is that the standard devia-
tion is consistently greater than the mean. Compare this with the good design illustrated in Fig-
ure 8.20 and the acceptable design of Figure 8.19.

Once the mean and standard deviation have apparently stabilized, use those values in the
appropriate sample-size equation or computer program to generate the actual sample size re-
quired. We do not recommend using sequential sampling graphs alone to determine sample size.

Alternatives to Sequential Sampling to Obtain an Estimate
of the Standard Deviation

Pilot sampling, using the sequential sampling procedure described above, is by far the best means
of deriving an estimate of the standard deviation to enter into a sample-size equation or com-
puter program. Two less effective methods will be briefly discussed.

The first method is to use data from similar studies to estimate the standard deviation. Al-
though not as reliable as a pilot study, you may have conducted a study using the same study de-
sign and measuring the same attribute in the same vegetation type. The standard deviation of the
sample from this study can be used as an estimate of the standard deviation of the population
that is the focus of the current study.
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Figure 8.20. Sequential sampling graphs of the 20m x 20m “400 plant population” introduced in
Chapter 7. The population was sampled using a 0.4m x |0m quadrat. The entire population consists
of 100 quadrats. Notice how far estimates are from the true mean if they are made before the
curves smoothing out. In Part A many of the quadrats sampled at the beginning had large values.
Note how we would have overestimated the population if we had stopped too soon,

The second method relies on professional judgment. As pointed out by Krebs (1998), an ex-
perienced person may have some knowledge of the amount of variability in a particular attribute.
Using this information you can determine a range of measurements to be expected (maximum
value — minimum value) and can use this range to estimate the standard deviation of a measure.
Table 8.4, adapted from the table in Dixon and Massey (1983), gives the appropriate conversion
factor to be multiplied by the range value to come up with an estimate of the population stan-
dard deviation.
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Figure 8.20B. This figure is the same sample as Part A, but with the data randomly reordered. If we'd
used the initial values shown in this graph (prior to the curves leveling off), we would have seriously under-
estimated the true mean value, as opposed to overestimating as in Part A.

To illustrate how to use this table, let us assume we know from working with a particular
species that in a sample of size 30 we could expect a range of 0 individuals per quadrat to 100 in-
dividuals per quadrat (this process assumes a normal distribution so we should not have too
many quadrats with zeros in them). The range in this case is 100 — 0 = 100 individuals. The con-
version factor for a sample of size 30 is 0.245. Our estimate of the population standard deviation
is, therefore, 100 individuals x 0.245 or 24.5 individuals per quadrat.
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Figure 8.21. Sequential sampling graph of vegetation height measurements. Note how the graphs
have flattened out long before the sampling ended.

Although this method can be used, it should be emphasized again that data from a pilot
study are more reliable and are preferable to this method.

Estimating the Standard Deviation When Using
Permanent Sampling Units

Estimating the standard deviation for a design that uses permanent sampling units is difficult be-
cause it is the standard deviation of the difference between the sampling units between the two
years that must be entered into the sample size equation or computer program, and this is a
value that you will not have until you have collected data in the second year. Thus, your pilot
study must span 2 years before you can accurately estimate the sample size required to meet
your sampling objective. You would like, however, to make a reasonable estimate from the first
year's data of the standard deviation of the difference. This will give you a good chance of having
used a large enough sample size the first year, with the result that you will not have to add more
sampling units the second year and will be able to use the first year's data in your analysis. Fol-
lowing are some methods you can use for this purpose.

You can estimate the standard deviation using the alternative methods discussed in the sec-
tion above. Remember, however, that it is the standard deviation of the difference that must be
estimated, so if you use data from previous studies, they must be studies that used permanent
sampling units. If you use the expected range to estimate the standard deviation, it must be the
range of the differences, not the range of the data for any one year.

There is another way you can calculate the necessary sample size by having only the first
year's pilot data. This method requires that you have some knowledge of the degree of correla-
tion (correlation coefficient) expected between the permanent sampling units between years.
Appendix II provides a formula by which you can estimate the standard deviation of the differ-
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Figure 8.22. Sequential sampling graphs for Astrogalus applegatei at the Euwana Flat Preserve. Part A shows
what can happen when the y-axis is set at too large a range, because of initial large values. This can make it appear
that the running mean and standard deviation has smoothed out when in fact they haven't. Part B illustrates the

real situation: neither statistic has smoothed out even by n = 100. This is a poor sampling design. See text for fur-
ther elaboration.
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Sample |Conversion| Sample |Conversion
Size Factor Size Factor
2 0.886 19 0.21
3 0.591 20 0.268
4 0.486 25 0.254
5 0.430 30 0.245
6 0.395 40 0.231
7 0.370 50 0.222
8 0.351 60 0.216
9 0.337 70 0.210
10 0.325 80 0.206
mn 0.315 90 0.202
12 0.307 100 0.199
13 0.300 150 0.189
14 0.294 200 0.182
15 0.288 300 0.174
16 0.283 500 0.165
17 0.279 1000 0.154
18 0.275

Table 8.4. Conversion Factors Used to Estimate
the Population Standard Deviation. To estimate the
standard deviation of a variable from knowledge of the
range for samples of various sizes, multply the observed
range (maximum — minimum value) by the table values to
obtain an unbiased estimare of the standard deviation. This
procedure assumes a normal distribution. From Dixon and
Massey (1983) and reproduced in Krebs (1998).

ence between years by using the standard deviation of
the first year’s sample and the correlation coefficient.
This is something you might have from similar studies
on the same species (although in that case you would
probably already have an estimate of the standard de-
viation of the difference between years that you could
use). Based on your knowledge of the life history of
the species you are dealing with, you might make an
initial estimate of correlation. For example, if you are
monitoring a long-lived perennial and do not antici-
pate a lot of seedling recruitment (or if you expect
seedling recruitment to be very close to parent plants),
vou might estimate that the correlation coefficient be-
tween years is relatively high, say about 0.80 or 0.90.
You then plug this coefficient into the formula, along
with your estimate of the standard deviation of the
first year's data.

Whichever method you use to estimate the stan-
dard deviation of the difference, once you have col-
lected the second year's data, you will still need to
enter the actual observed standard deviation of the
difference into an equation or a computer program to
calculate actual sample size. You can then modify
your initial estimate of sample size accordingly.

MANAGEMENT IMPLICATIONS

Good sampling design can dramatically increase the
precision of the estimates of population characteristics
while reducing field costs. While good design may be
time-consuming at the planning stage of a monitoring

study, the investment pays well throughout the life of the monitoring and in the application of
data to management decisions. Six design features must be addressed when planning a monitor-

ing study using sampling:

. What is the population of interest?

. What is an appropriate sampling unit?

. What is an appropriate sampling-unit size and shape?

. Should sampling units be permanent or temporary?

1
2
3
4. How should sampling units be positioned?
D
6

. How many sampling units should be sampled?



